
Contents lists available at ScienceDirect
Information Systems

Information Systems 56 (2016) 36–54
http://d
0306-43

n Tel.:
E-m
1 D
journal homepage: www.elsevier.com/locate/infosys
A tool for producing structured interoperable data
from product features on the web

Tuğba Özacar n

Department of Computer Engineering, Celal Bayar University, Muradiye, 45140 Manisa, Turkey
a r t i c l e i n f o

Article history:
Received 11 March 2015
Accepted 7 September 2015

Recommended by: F. Carino Jr.

tures using a web site-specific template created by the user. The value of the extracted
data is maximized by using GoodRelations, which is the standard vocabulary for modeling
Available online 25 September 2015

Keywords:
Information extraction
GoodRelations
Protégé
Web scraping
Ontology
Rich snippets
x.doi.org/10.1016/j.is.2015.09.002
79/& 2015 Elsevier Ltd. All rights reserved.

þ90 236 2012103; fax: þ90 236 2412143.
ail address: tugba.ozacar@cbu.edu.tr
ownload link: https://github.com/tugbaozaca
a b s t r a c t

This paper introduces a tool that produces structured interoperable data from product
features, i.e., attribute name–value pairs, on the web. The tool extracts the product fea-

product types and their features. The final output of the tool is GoodRelations snippets,
which contain product features encoded in RDFa or Microdata. These snippets can be
embedded into existing static and dynamic web pages in a way accessible to major search
engines like Google and Yahoo, mobile applications, and browser extensions. This
increases the visibility of your products and services in the latest generation of search
engines, recommender systems, and other novel applications.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The web contains a huge number of online shops which provide excellent resources for product information. Besides, the
data of e-commerce is growing at a rapid speed [1]. Information in e-commerce includes technical specifications and
descriptions of products. If we present this information in a structured way, it will significantly improve the effectiveness of
many applications [2].

The vast majority of web content consists of different kinds of textual documents, which are provided in a number of
different formats and vary from plain text to semi-structured documents containing data records. This makes different
methods of bringing structure and semantics to the web (including web information extraction) an active research field [3].
Although the web has a dynamic nature, Etzioni has argued for that “information on the web is sufficiently structured to
facilitate effective web mining” [4]. Since a big portion of web content subject to web information extraction is created from
data repositories, a web information extraction system rediscovers the structure that was encoded in a web page.

This paper introduces a tool1 that produces structured interoperable data from product features, i.e., attribute name–
value pairs, on the web. It extends the previous work of the author [5] in two ways. First it supports tree nodes that define
text operations (e.g. concatenate, contains, fragment, lower, upper, replace, substring, and trim) on tree nodes. Second it
presents a user-based evaluation accomplished using 15 different “real world” scenarios.

Designed as a plug-in for the open source ontology editor Protégé [6], the proposed tool exploits the advantages of the
ontology as a formal model for the domain knowledge.
r/iris

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.09.002
http://dx.doi.org/10.1016/j.is.2015.09.002
http://dx.doi.org/10.1016/j.is.2015.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.09.002&domain=pdf
mailto:tugba.ozacar@cbu.edu.tr
https://github.com/tugbaozacar/iris
http://dx.doi.org/10.1016/j.is.2015.09.002


Fig. 1. A regular snippet and a rich snippet.

T. Özacar / Information Systems 56 (2016) 36–54 37
Another promising feature of the tool is support for building an ontology that is compatible with GoodRelations
Vocabulary [7]. GoodRelations is the most powerful vocabulary for publishing all of the details of your products and services
in a way friendly to search engines, mobile applications, and browser extensions. In [8], GoodRelations product ontology is
defined as a “product atlas” describing specifications, marketing copy, catalog data, photos, videos, manuals, installation
instructions, updates, responses to issues, prices and reviews of over 1 million products from various sources. It updates
twice a week, so companies can enter all their descriptions and prices and the information will flow through the thousands
of e-commerce systems within a few days. The goal is to have extremely deep information on millions of products, providing
a resource that can be plugged into any e-commerce system without limitation.

If you have GoodRelations in your markup, Google, Bing, Yahoo, and Yandex will or plan to improve the rendering of your
page directly in the search results. Rich snippets—the few lines of text that appear under every search result—are designed
to give users a sense for what is on the page and why it is relevant to their query. Fig. 1 shows the difference between a
regular and a rich snippet. The first search result is a regular snippet and the second one is a rich snippet. The proposed tool
supports marking up your content with RDFa or Microformats for creating rich snippets of the extracted products.

In addition to seeing rich snippets in the search results, rich markup indicates the relevance of your page for a particular
query. You provide information to the search engines so that they can rank up your page for queries to which your offer is a
particularly relevant match. For many popular shop applications including Drupal Commerce, Magento, Prestashop, and
Rakuten.de/Tradoria.de, Joomla/Virtuemart, there exist free extension modules that make adding GoodRelations RDFa for
semantic SEO as simple as a few mouse-clicks.

The tool supports “Open Standards” including RDFa, Microdata and JSON. International Telecommunications Union (ITU-
T) specifies that “Open Standards” facilitate interoperability and data exchange among different products or services and are
intended for widespread adoption. In [9] the key benefits of interoperable data are listed as follows: enabling information
sharing with trusted partners, enhancing system capabilities and longevity, lowering overall costs of information applica-
tions, improving the breadth and quality of information, increasing the speed and accuracy of decisions, improving trans-
parency and speed of disclosure of information to valid constituents, preserving data for future uses.

The organization of the article is as follows: In Section 2, we review background information and related work. Section 3
includes an overview of the system's architecture, features and settings and a scenario based quick-start guide. Section 4
presents a user-based evaluation accomplished using 15 different “real world” scenarios. Finally, Section 5 concludes the
article with a brief talk about possible future work.
2. Background knowledge and related work

The information extraction systems can be divided into following three categories [10]:

� Procedural wrapper: The approach is based on writing customized wrappers for accessing required data from a given set
of information sources. In these systems the extraction rules are coded into the program.

� Declarative wrapper: These systems consist of a general execution engine and declarative extraction rules developed for
specific data sources.

� Automatic wrapper: These systems use machine learning techniques to learn extraction rules by examples.

In [11] information extraction systems are divided with respect to the level of automation of wrapper creation into manual, semi-
automatic (i.e., based on user interaction with user interface) and automatic (using supervised machine learning techniques). In this
paper, we present a tool that has two main components: a wrapper and an ontology builder.

The main component of the proposed tool is a declarative and manual wrapper, which has a general rule engine that
executes the extraction rules specified in a template file created manually by the user. The extraction rules are specified
using our domain-specific language (Appendix D) based on XML Path Language (XPath) [12]. XPath is a query language that
can be used for selecting arbitrary parts of HTML documents. In addition to specifying the XPath query, these rules also
specify how to convert the extracted information to the internal object format. The template file also provides information
on how the HTML documents should be acquired.



Fig. 2. The underlined properties differ for the example items of the same kind.

T. Özacar / Information Systems 56 (2016) 36–5438
Manual approaches are known to be tedious, time-consuming and require some level of expertise concerning the
wrapper language [13]. Besides, when web sites change, updating of specification files have to be done manually by user.
However, manual and semi-automatic approaches are currently better suited for creating robust wrappers than the auto-
matic approach. The maintenance costs of current automatic approaches are also comparable to manual and semi-automatic
approaches, since in the automatic approach the user has to annotate new training samples when the wrapped web pages
are modified [11].

Writing a template for the tool is considerably easier than most of the existing manual wrappers; however, it requires
users’ understanding of the HTML parse tree, the identification of the separating tags for rows and columns in a table, etc.
Thus, such kinds of approaches are classified as systems that require special expertise of users [14].

Various researchers have proposed methods and developed tools toward the web information extraction task [15]. In the
manual approach (e.g. Jedi [16], TSIMMIS [17], and W4F [18]), users create general extraction rules by analyzing a repre-
sentative set of web pages, and they are responsible for updating the specification files when necessary. In automatic
generation (e.g. WIEN [19], SoftMealy [20], and Stalker [21]), machine learning techniques are applied to the training
examples provided by the user. Semi-automatic approaches, such as XWRAP [22] and Lixto [23], try to make wrapper
generation easier through mappings between the visual and text or DOM views.

All of the work above is about extracting information fromweb pages. However, there are works which directly focus on
the problem of this paper—product feature extraction fromweb. The first one [24] uses a template-independent approach to
extract product features from web. They use a co-training algorithm with naive Bayesian classifier to identify the candidate
pairs. This approach makes hypothesis to identify the specification block but since some detail product pages may violate
these hypothesis, the pairs in these pages cannot be extracted properly. Besides, this approach needs training data. The
second work [25] needs two predefined ontologies (table ontology and domain ontology) to extract product features from a
web page. The table ontology is a standard ontology for every web page. On the other hand the domain ontology is built
according to the contents of the page and it is not an easy task to build the domain ontology from scratch for every change in
the page content. Finally, the third work [2] is based on unsupervised adaptive template construction. This approach is
evaluated using data corpus in two different domains.

Portia is an emerging tool2 that allows you to visually scrape web sites without any programming knowledge required.
With Portia you can annotate a web page to identify the data you wish to extract, and Portia will understand based on these
annotations how to scrape data from similar pages. For example, a product may have fields named name, price, manu-
facturer and so on, annotations are used to extract data from the page into each of these fields. You can define annotations
by highlighting or clicking elements on the page. The problem lies with the fact that some pages containing the same item
type may have a different layout or fields missing, and you will need to accommodate those pages by creating a template for
each layout variation (see Fig. 2).

The tool presented in this paper differs from all the above works in many ways. First, it semi-automatically transforms
the extracted information to an ontology [26] in order to share and reuse common understanding of structure of infor-
mation among users or software agents.

Second, it provides a domain-specific language, which has a very concise but powerful syntax based on XPath. This
language primarily serves to make it easy for users to create web-site specific templates.
2 https://github.com/scrapinghub/portia

https://github.com/scrapinghub/portia


Fig. 3. Architecture of the system.

T. Özacar / Information Systems 56 (2016) 36–54 39
Third, according to [27], the proposed tool is the first Protégé plug-in that is used to extract product features from web
pages. As an extension to Protégé, it exploits the advantages of the ontology as a formal model for the domain knowledge
and profits from the benefits of a large user community (currently 230,914 registered users), a library of reusable com-
ponents and a flexible architecture.

Fourth, over time, many of web sites have started to use composite web documents (using frames and JavaScript to
combine multiple HTML document), complex server interaction paradigms (such as AJAX), advanced user interface elements
(based on a wide use of JavaScript and Flash components, as well as on the rich event model) and different types of stateful
design patterns. The problem of extracting information from web sites using these technologies (referred to as complex
data-intensive web sites) is addressed in [3].

The tool uses HtmlUnit WebDriver [28] for parsing the web page into DOM tree. HtmlUnit is currently the fastest
implementation of WebDriver, a pure Java solution and so it is platform independent and has fairly good JavaScript support
and is able to work even with quite complex AJAX libraries. As a result, the system partially handles the problem of
extracting information from complex-data intensive web sites.

Fifth, the tool supports marking up your product information in a way that is compatible with GoodRelations
Vocabulary [7], which is currently supported by Google and Yahoo. Search engines use your markup to augment the
preview of your product in the search results preview which certainly will increase the visibility of your product
among other results.

Finally, as an open source Java Application, the tool can be further extended, fixed or modified according to the needs of
the individual users.
3. Scenario-based system specification

The proposed tool gathers semi-structured product information from an HTML page, applies extraction rules specified in
the template file, and presents the extracted product data in an ontology that is compatible with GoodRelations Vocabulary.
It has two main components: the wrapper and the ontology builder (Fig. 3).

The wrapper extracts the product data from the web page using the template file. The HTML page is first parsed into a DOM
tree using HtmlUnit, which is aweb driver that supports walking the DOMmodel of the HTML document using XPath queries. The
template file includes a tree that specifies the paths of HTML tags around the product features. The system evaluates the nodes in
the template and queries the HtmlUnit for the required product properties. At the end of this process, the system returns a list of
product objects.

Then the user classifies each extracted property using the property categories of the GoodRelations ontology and the
ontology builder automatically builds a GoodRelations-compliant ontology. Finally, the tool serializes the ontology into a
series of structured data markup standards using RDF Translator API [29].

The following subsections describe building a template file and a GoodRelations-compliant ontology.



T. Özacar / Information Systems 56 (2016) 36–5440
3.1. Building a template file

Creating a template file is the fundamental step for using the tool. The information collected using the template is
mapped to the attributes of the Product object which is represented in Fig. 4. Title, brand, productID, description, and imgLink
are single-valued attributes whereas feature, includes, propertyName and propertyValue are multi-valued attributes. For the
propertyName and propertyValue arrays, the elements at the same index (propertyName½x�-propertyValue½x�) constitute a
property name–value pair.

A template has two parts: the first part contains the tree that specifies the paths of HTML tags around the product
features and the second part contains the information on how the HTML documents should be acquired.

The first example uses “amazon.com” pages that contain the search results about laptops. By the time this example was
written, the search results contained 17,714 laptops spread across 400 pages. Fig. 5(a) shows the first product on the first
page. We create path expressions to select the parts of the HTML document that contains the product features. There may be
more than one path to select a specific part of the HTML document.

One possible path to select the title of this product is given in Fig. 5(b). This path shows the h3 heading tag having a class
attribute with the value “a-size-base s-inline s-access-title a-text-normal” and nested in the HTML list having an id attribute
with the value “result_0”.

Possible paths to select the image link and the link that goes to the web page that contains the details of the product are
given in Fig. 5(c) and (d) respectively. The first path shows the image link having a src attribute and nested in the HTML list
having id attribute with the value “result_0”. The second path shows the link having class attribute with value “a-link-normal s-
access-detail-page a-text-normal” and nested in the HTML list having id attribute with the value “result_0”.

When you follow the link in Fig. 5(d), the destination page includes the HTML table containing the details of the first
product (Fig. 6(a)). We create the path expressions to select the parts of the HTML document that contains the cells of the
table. Cells having a class attribute with the value “label” contain the property names of the product. Cells having a class
attribute with value the “value” contain the property values of the product. One possible path to select the property names is
given in Fig. 6(b) and a possible path to select the property value is given in Fig. 6(c).
Fig. 5. The paths selecting the product title, product image link and the link that goes to the web page that contains the details of the product.

Fig. 4. The attributes of the Product object.



Fig. 6. The paths selecting the cells of the HTML table with details of the first product.

Fig. 7. The tree nodes for extracting “Laptops” from “http://www.amazon.com”.

T. Özacar / Information Systems 56 (2016) 36–54 41
After analyzing the web pages about the first product and defining the paths to the relevant information about the product, we
built the tree in Fig. 7 for extracting product features from the web page.

The full path of the relevant information is built by ordering all the nodes from root to leaf. Since there may be more than one
path to the relevant information, it is possible to create alternative trees for extracting the same information.

Each node of the tree specifies an HTML element in the web page. The nodes of the tree are specified in the template file in
Appendix A according to our domain-specific language, whose EBNF notation is represented in Appendix D. SELECT-ATTR-VALUE

http://www.amazon.com


T. Özacar / Information Systems 56 (2016) 36–5442
fields are used to specify the HTML element. The root node defines the HTML elements containing the information of a specific
product on the page. In this example, each product is an HTML list item. The first item has an id attribute with the value result_0,
the second one has an id attribute with the value result_1, and so on. Therefore to specify the path to a product on the page, we
select HTML list items, which have id attributes with values containing the string result_. Three asterisk characters in the VALUE
field of the root node (Fig. 7) substitute for zero or more characters at the beginning and the end of the value.

GETMETHOD field collects the proper values in the selected HTML element. This field is used only with the leaf nodes or
the internal nodes returning an HTML link element. If you want to get the textual representation of the element, you define
the value of the GETMETHOD field as “asText”. On the other hand if you want to get the value of an element attribute then
you specify the name of that attribute as the value of this field.

The AS field is only used with leaf nodes. The value which is collected from a leaf node using GETMETHOD field is
mapped to the product attribute specified in the AS field.

The first part of the template (Appendix A) contains the tree in Fig. 7 encoded using the syntax described above. The
second part of the template contains the information on how the HTML documents should be acquired. The fields in the
second part of the template are as follows:

� NEXT_PAGE: If the information about products is spread across multiple web pages, we use this field to specify the HTML
link of the next page. The link is determined by a link element in the HTML code (see Appendix A) of the page or by an
open parameter in the URL of the page. In the second case, the page number is specified in the URL of the page, e.g.
&page¼ 1. For navigating to the next page, the page number is increased by a number n. For example, if the page
parameter is &page¼ and n equals 1 then the value of the next page field is &page¼½ � þ1½ �.

� PAGE_RANGE: This field stores the page number or the range of pages including the information to be extracted.
� BASE_URI: This field represents the base URI of the web site.
� PAGE_URI: This field stores the URI of the first page including the information to be extracted.
� CLASS: This field stores the name of the class that represents the products to be extracted.

In some cases, it is required to define text operations (e.g. concatenate, contains, fragment, lower, upper, replace, substring, and trim) on
tree nodes. For instance “color” property and its value “black” can be organized in the same text node as follows:
〈span〉color: red〈=span〉. The values in this text node should be fragmented and “color” should be mapped to property name and
“black” should be mapped to property value.

Appendix B represents a template to collect kids' books from “barnesandnoble” pages. Leaf node in grey represents a text
node which contains both property name and property value. Therefore the AS field has two values “product.propertyName”
and “product.propertyValue” respectively.

OPERATORS field represents the operations to be executed on the value of the text node. In this example, the first
operation is “split”, the first operand is “Uþ003A” which is the hexadecimal code of the character “:”. This returns a string
array that contains the substrings in the value of the text node that are delimited by “:”. The second operand “0” gets the
array element at index 0. Finally, the third operand “0” assigns this array element to the value in the AS field with index 0,
namely “product.propertyName”. The second operation is “split” again, and the first operand is “Uþ003A” which is the
hexadecimal code of the character “:”. This returns a string array that contains the substrings in the value of the text node
that are delimited by “:”. The second operand “1” gets the array element at index 1. Finally, the third operand “1” assigns this
array element to the value in the AS field with index 1, namely “product.propertyValue”. Appendix C represents the whole
list of operators that are supported by the tool.

OPERATORS field is also used for text node fragmentation based on HTML text formatting (bold, important, italic, emphasized,
marked, small, deleted, inserted, subscripts and superscripts). For instance “color” property and its value “black” can be organized
in the same text node as follows:

〈span〉〈strong〉color〈=strong〉black〈=span〉:

The values in this text node can be fragmented in the following way:

SELECT ¼ spanð Þ;GETMETHOD¼ asTextð Þ;
AS¼ product:propertyName

� �
product:propertyValue

� �� �
;

OPERATORS¼ strong
� �

0f gf g exceptStrong
� �

1f gf g� �

We first get the text element between 〈strong〉 tags and assign this text to the value in the AS field with index 0, namely “product.
propertyName”. Then we get the all text except the text between 〈strong〉 tags and assign it to the value in the AS field with index 1,
namely “product.propertyValue”.

We can also apply more than one operator on a specific value in the text node. The operators with a common last
operand value are applied in order. In the following HTML code, there is an asterisk character at the beginning of the
property name which is formatted in bold:

〈span〉〈strong〉�color〈=strong〉black〈=span〉:



T. Özacar / Information Systems 56 (2016) 36–54 43
To get the property name properly, we first get the text between 〈strong〉 tags and remove the “*” character at the beginning
of the string as follows:

SELECT ¼ spanð Þ;GETMETHOD¼ asTextð Þ;
AS¼ product:propertyName

� �
product:propertyValue

� �� �
;

OPERATORS¼ strong
� �

0f gf g exceptStrong
� �

1f gf g substring
� �

1f g 0f gf g� �

As you can see above, operators “strong” and “substring” have the last operand value 0, therefore these operators are
executed in order. The output of the strong operator is the input of the substring operator and the result will be assigned to
the value in the AS field with index 0 (the value of the last operand). We apply the substring operator to the text between
Fig. 8. The new tab in Protégé Ontology Editor.

Fig. 9. The tool imports all laptops from the specified “http://www.amazon.com” pages.

http://www.amazon.com


Fig. 10. Pattern for GoodRelations-compliant product ontologies.

Fig. 11. Selecting the types and units of properties using “Use GoodRelations” wizard.

T. Özacar / Information Systems 56 (2016) 36–5444
the strong tags (“*black”). The substring function returns the substring beginning with the character at the index specified in
the first operand. The first operand of substring is 1, therefore we get the substring “black” and assign this value to the
“product.propertyName”.

3.2. Building the ontology

The tool is developed as a plug-in for Protégé Ontology Editor therefore the user interface of Protégé is extended with
additional tabs to access the modules of the tool. First the user opens an empty ontology in Protégé Editor and chooses



Fig. 12. Comparison of the significance of the different usability questionnaires.

Table 1
The experience levels of participants.

Subject N AVG DEV MED MAX MIN

HTML 15 4.13 0.92 4 5 2
Ontology-based systems 15 3.20 1.61 4 5 1
Protégé environment 15 2.67 1.76 2 5 1

Table 2
The three internal subscales of CSUQ.

Score name Average to responses to

Overall Questions 1–19
System usefulness Questions 1–8
Information quality Questions 9–15
Interface quality Questions 16–18

Table 3
CSUQ evaluation results.

Question N AVG DEV MED MAX MIN

Overall, I am satisfied with how easy it is to use this system 15 5.00 0.65 5 6 4
It was simple to use this system 15 4.73 0.70 5 6 4
I can effectively complete my work using this system 15 5.60 1.12 6 7 4
I am able to complete my work quickly using this system 15 5.67 0.82 5 7 5
I am able to efficiently complete my work using this system 15 5.93 1.16 6 7 4
I feel comfortable using this system 15 5.07 1.33 5 7 2
It was easy to learn to use this system 15 4.87 1.30 5 7 3
I believe I became productive quickly using this system 15 5.93 0.96 6 7 4
The system gives error messages that clearly tell me how to fix problems 15 3.13 0.92 3 5 2
Whenever I make a mistake using the system. I recover easily and quickly 15 3.67 1.40 4 6 2
The information (such as online help, on-screen messages, and other documentation) provided with this system

is clear
15 4.80 1.08 5 6 3

It is easy to find the information I needed 15 5.00 1.00 5 7 3
The information provided for the system is easy to understand 15 5.40 0.91 6 7 4
The information is effective in helping me complete the tasks and scenarios 15 5.53 0.92 6 7 4
The organization of information on the system screens is clear 15 5.53 1.06 6 7 4
The interface of this system is pleasant 15 5.00 1.00 5 7 4
I like using the interface of this system 15 5.20 0.86 5 7 4
This system has all the functions and capabilities I expect it to have 15 5.80 0.77 6 7 4
Overall. I am satisfied with this system 15 5.27 0.88 5 7 4

T. Özacar / Information Systems 56 (2016) 36–54 45



Table 4
CSUQ single participant evaluation scores.

Respondent no Overall System usefulness Information quality Interface quality Average Score value

1 4.53 5.25 3.29 5.00 4.52 64.51
2 4.95 5.00 4.71 5.33 5.00 71.41
3 4.42 5.00 3.57 5.00 4.50 64.26
4 5.11 5.25 4.71 5.67 5.18 74.06
5 4.84 5.25 4.57 4.33 4.75 67.85
6 5.16 5.00 4.71 6.33 5.30 75.73
7 5.11 5.88 4.00 5.33 5.08 72.55
8 5.21 5.13 5.14 5.67 5.29 75.52
9 5.68 5.88 5.00 6.67 5.81 82.95
10 4.89 4.63 5.14 5.33 5.00 71.41
11 5.32 5.38 5.86 4.00 5.14 73.39
12 5.95 6.63 5.43 5.00 5.75 82.15
13 5.37 5.13 5.43 5.67 5.40 77.10
14 5.26 5.38 5.29 5.00 5.23 74.73
15 4.89 5.50 4.00 5.67 5.02 71.65
Average 5.11 5.35 4.72 5.33
Score value 73.03 76.43 67.48 76.19

Table 5
Items of the SUS questionnaire.

No Question

1 I think that I would like to use this system frequently
2 I found the system unnecessarily complex
3 I thought the system was easy to use
4 I think that I would need the support of a technical person to

be able to use this system
5 I found the various functions in this system were well

integrated
6 I thought there was too much inconsistency in this system
7 I would imagine that most people would learn to use this

system very quickly
8 I found the system very cumbersome to use
9 I felt very confident using the system
10 I needed to learn a lot of things before I could get going with

this system

T. Özacar / Information Systems 56 (2016) 36–5446
“Project - Configure…” to bring up the “Configure” dialog. The new tab will be listed on the TabWidgets panel. The user
checks the “Visible” checkbox and click the OK button. The system will now display the tab as in Fig. 8.

After opening the ontology, the user selects the template that is be used to import product features from the web. In this
example, we choose the amazon.txt by clicking the “Open template”’ button in Fig. 8. Then the tool imports all laptops from
the “amazon.com”’ pages specified in the PAGE_RANGE field of the template in Appendix A (Fig. 9). The imported individuals
are listed in the “Individuals Window”. Fig. 9 shows the expanded version of the Product_0 node, whose children store all
properties of Product_0 and their corresponding values. The “Properties Window” lists all properties of the individuals in
“Individuals Window”.

Next the user specifies how the new ontology must be designed in order to be compatible with the GoodRelations
ontology in Fig. 10. All the extracted properties should be categorized under the appropriate GoodRelations product category
in the following way:

� px is mapped to py, if the property px is semantically equivalent of the property py and py is a property from the following list:
“gr:category”, “gr:color”, “gr:condition”, “gr:depth”, “gr:description”, “gr:hasBrand”, “gr:hasEAN UCC-13”, “gr:hasGTIN-14”,
“gr:hasGTIN-8”, “gr:hasMPN”, “gr:hasMakeAndModel”, “gr:hasManufacturer”,“gr:hasStockKeepingUnit”, “gr:height”, “gr:
isAccessoryOrSparePartFor”, “gr:isConsumableFor”, “gr:isSimilarTo”, “gr:name”, “gr:serialNumber”, “gr:weight”, “gr:width”.

� All properties that specify quantitative characteristics, for which an interval is at least theoretically an appropriate value, are
defined as subproperties of “gr:quantitativeProductOrServiceProperty”. Allowed values for a “quantitativeProductOrService-
Property” are “gr:QuantitativeValue”, “gr:QuantitativeValueFloat” and “gr:QuantitativeValueInteger”. A quantitative value is a
numerical interval that represents the range of a certain “gr:quantitativeProductOrServiceProperty” in terms of the lower and



Table 6
SUS evaluation results.

Question no Responder
1

Responder
2

Responder
3

Responder
4

Responder
5

Responder
6

Responder
7

Responder
8

Responder
9

Responder
10

Responder
11

Responder
12

Responder
13

Responder
14

Responder
15

1 3 4 2 3 3 3 2 2 4 3 3 4 4 4 4
2 3 4 3 3 3 4 3 4 3 4 4 4 3 4 3
3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3
4 4 3 3 3 4 4 4 4 4 4 3 4 3 3 4
5 4 2 4 3 3 4 2 3 4 3 4 3 3 4 3
6 4 4 4 4 4 4 3 4 4 4 4 4 2 4 4
7 2 3 2 3 2 2 3 4 2 2 2 4 4 3 2
8 3 4 2 3 4 3 4 4 4 3 3 4 4 4 3
9 1 3 1 2 2 3 3 3 4 2 3 4 2 3 3
10 4 4 3 3 3 2 3 4 3 3 3 3 2 2 3
Sum 30 34 26 30 30 32 30 35 35 31 32 37 30 34 32
Score value 75 85 65 75 75 80 75 87.5 87.5 77.5 80 92.5 75 85 80

T.Ö
zacar

/
Inform

ation
System

s
56

(2016)
36

–54
47



Table 7
SUS scores with their corresponding adjective [33] and acceptability ratings [34].

SUS scores Adjective ratings Acceptability

89–100 Best imaginable
84–88 Excellent Acceptable
71–83 Good
50–70 OK Marginal
32–49 Poor
20–31 Awful Unacceptable
0–19 Worst imaginable

Table 8
The complete set of words in the Microsoft Reaction Card.

Accessible Creative Fast Meaningful Slow
Advanced Customizable Flexible Motivating Sophisticated
Annoying Cutting edge Fragile Not secure Stable
Appealing Dated Fresh Not valuable Sterile
Approachable Desirable Friendly Novel Stimulating
Attractive Difficult Frustrating Old Straight forward
Boring Disconnected Fun Optimistic Stressful
Business-like Disruptive Gets in the way Ordinary Time-consuming
Busy Distracting Hard to use Organized Time-saving
Calm Dull Helpful Overbearing Too technical
Clean Easy to use High quality Overwhelming Trustworthy
Clear Effective Impersonal Patronizing Unapproachable
Collaborative Efficient Impressive Personal Unattractive
Comfortable Effortless Incomprehensible Poor quality Uncontrollable
Compatible Empowering Inconsistent Powerful Unconventional
Compelling Energetic Ineffective Predictable Understandable
Complex Engaging Innovative Professional Undesirable
Comprehensive Entertaining Inspiring Relevant Unpredictable
Confident Enthusiastic Integrated Reliable Unrefined
Confusing Essential Intimidating Responsive Usable
Collaborative Efficient Impressive Personal Unattractive
Consistent Exciting Inviting Satisfying Valuable
Controllable Expected Irrelevant Secure
Convenient Familiar Low maintenance Simplistic

Fig. 13. Selected words in MPRC.

T. Özacar / Information Systems 56 (2016) 36–5448
upper bounds for a particular “gr:ProductOrService”. It is to be interpreted in combination with the respective unit of mea-
surement. Most quantitative values are intervals even if they are in practice often treated as a single point value. Example: a
temperature between 60 and 67 °F. Note that some properties of the first category (“gr:depth”, “gr:height”, “gr:weight”, and “gr:
width”) are defined as subproperties of “gr:quantitativeProductOrServiceProperty”.

� All properties for which value instances are specified are subproperties of “gr:qualitativeProductOrServiceProperty”. Allowed
value for a “qualitativeProductOrServiceProperty” is “gr:QualitativeValue”, which is a predefined value for a product char-
acteristic. For example, light bulbs have the qualitative property “hasEnergyEfficiency”, with predefined values from “A” to “G”.

� “gr:datatypeProductOrServiceProperty” is the superproperty for all pure datatype properties that can be used to describe
a product and services instance. Only such properties that are not quantitative and that have no predefined value



T. Özacar / Information Systems 56 (2016) 36–54 49
instances are subproperties of this property. In practice, this refers to a few integer properties for which the integer value
represents qualitative aspects, for string datatypes (as long as no predefined values exist), and for boolean datatype
properties. For example, “isTouchscreenEnabled” is a “datatypeProductOrServiceProperty” of type boolean (yes/no).

For creating a GoodRelations-compliant ontology, user selects the individuals and properties that will reside in the ontology
and clicks the “Use GoodRelations Vocabulary” button (Fig. 8). Using the newly opened wizard, user selects the
corresponding GoodRelations property type and respective unit of measurement for each selected property. For the
example, we choose “brandName”, “hardDrive”, “color”, and “numberofUSB2Ports” properties and specify the property
types and units as in Fig. 11. Note that the selected unit of measurement is saved as an UN/CEFACT Common Code in the
ontology and “Symbol” in Fig. 11 means the property does not specified with a unit of measurement.

The last step is saving the ontology and serializing the ontology in one of the different standards for structured data markup.
The user clicks the “Save” button (Fig. 8) to save the ontology in an owl file. Then the user clicks the “Export to a serialization
format” button (Fig. 8) to view the ontology in one of the structured data markup standards.
4. Evaluation

We evaluate the usability of the tool using three questionnaires: Computer System Usability Questionnaire (CSUQ), System
Usability Scale (SUS) and Microsoft's Product Reaction Card (MPRC). We primarily choose CSUQ and SUS for our experiments
because these two approaches have a higher accuracy with an increasing sample size than the other questionnaires. These two
formal approaches provided results to evaluate whether users can complete tasks. We supported these approaches with MPRC for
measuring intangible aspects of the user experience such as “fun’, “enjoyment” or whether the product is desirable enough to use.

Fig. 12 shows the results of the study by Tullis and Stetson [30]. They analyze the effectiveness of four standard usability
questionnaires: SUS, QUIS, CSUQ, words that a variant of Microsoft's Product Reaction Cards, and one that they have used in
their usability lab for several years. As one would expect, the accuracy of the analysis increases as the sample size gets larger.
SUS and CSUQ reach asymptotes of 90–100% at a sample size of 12. Words jump up to about 70% accuracy at a sample size of
14. These results also indicate that, for the conditions of the study [30], sample sizes of at least 12–14 participants are
needed to get reasonably reliable results. Therefore we have conducted a survey with 15 participants.

Two of the participants were working as software developers for an IT company. The other participants were 4 academics and
9 students (3 undergraduate students, 2 master students and 4 doctorate students) from computer science departments of two
different universities. The participants rate their experience levels in HTML, ontology-based systems and Protégé Ontology
Development Environment with 1 indicating no experience and 5 being an expert. The results are shown in Table 1, where N is the
number of responses, AVG is the average value, DEV is the deviation value, MED is the median, MAX is the maximumvalue, and the
MIN is the minimum value. Four of the participants had no experience with ontology based-systems, and six participants had no
experience with Protégé Environment. One user had limited knowledge (level 2), and two users had average knowledge (level 3)
with HTML. As a result of the study, users having no experience (level 1) with ontology-based systems or Protégé Environment
could complete tasks with the tool. On the other hand, basic knowledge of HTML (level 2) is required to build a template.

The usability test was conducted as follows. First the participants received a brief introduction of 35 min of the structure
of the evaluation, the basic functionality of the tool and example templates for different scenarios. After this introduction,
the participants chose a web site which provides resources for product features. Then they built a template and run it
without any further hint. The results for individual participants and the templates created are available on our repository3.
At the end, each participant had to fill out a Computer System Usability Questionnaire, a System Usability Scale Ques-
tionnaire and a Microsoft Reaction Card. They also required answering questions about the level of previous HTML, Protégé
and Ontology-based systems experiences and free text questions about most positive and negative aspects. The following
subsections present the results of the questionnaires and discussion of these results.

4.1. CSUQ evaluation results

The Computer Usability Questionnaire (CSUQ) [31] contains 19 questions and users rate them from 1 to 7, where 1 is
strongly agree and 7 is strongly disagree. Besides, participants asked about the most positive and negative aspects of the
system. The three internal subscales of CSUQ (Table 2) are System Usefulness, Information Quality and Interface Quality. The
first eight questions on CSUQ assess System Usefulness. These questions refer to the users’ perception of the ease of use,
learnability, speed of performance and effectiveness in completing tasks, and subjective feeling. Questions 9–15 can be used
as a means of assessing the participants' satisfaction with the quality of the information associated with the system.
“Information quality” includes the users' beliefs regarding error messages and error handling, information clarity, under-
standability, and utility more generally. Questions 16–18 provide a score for the interface quality.
3 Download link: http://dropproxy.com/f/A94

http://dropproxy.com/f/A94


T. Özacar / Information Systems 56 (2016) 36–5450
The results of the CSUQ are shown in Table 3, where N is the number of responses, AVG is the average value, DEV is the
deviation value, MED is the median, MAX is the maximum, and the MIN is the minimum.

Most of the participants appreciated that the systemwas easy-to-use and has a clear value and purpose. They found it to be
a time-saving, fast and useful tool, which contributes to lowering the cost of data entry and improves productivity. It provides
clear and reliable results even with complex web sites. They specified that at the beginning the system was intimidating but
after analyzing the example templates it was easy to create another one. They felt comfortable about using the system for
different scenarios and they did not need any extra knowledge other than the basics of HTML. As a negative aspect most of the
participants explicitly mentioned that it is not easy to use the system for those who lack basic HTML knowledge.

The majority of participants enjoyed to use the interface and found it clear and pleasant. But two participants were not
satisfied with the user-interface and required for a more user-friendly one. Five of the participants criticized that beyond
being integrated as a plug-in to Protégé, the application should also be delivered as a Java library. Three of the participants
specified that using a text file for creating the template is error-prone and they concerned about the lack of visual aids. One
participant proposed a module to check the syntax of the template.

In general the participants were satisfied with the functions and capabilities of the system. They appreciate the support of
different output formats like Microdata and RDFa. They found it flexible to be able to carry out string operations (e.g. concatenate,
substring, and trim) on leaf nodes. They verified that the system works with a wide variety of web sites with different tech-
nologies. One participant criticized that the system is based on HtmlUnit so it may not be able to handle web sites with complex
JavaScript based interfaces. One participant specified the domain-specific language to build a template provided productivity and
accessibility. Another participant found the GoodRelations E-commerce Vocabulary support very useful.

The quality of the error messages and the documentation was ranked negative in average. The participants criticized the
inadequate, very generic and not self-explaining error messages. They reported that even soft errors cannot be recognized and
recovered by the system. Most of the participants did not satisfy with the quality of the user documentation. So we plan to enrich
the documentation with the 15 example templates produced by the participants. In addition to the above, the some of the
participants required to be informed about the changes in the web site they used. Some participants required different output
options like database output and csv output. One participant required a module to perform arithmetical and string operations and
error correction on extracted data.

We further calculated the overall score and the three factor scores for System Usefulness, Information Quality, and Interface
Quality for all participants as illustrated in Table 4. The overall assessment of the students about the usability of the tool was
positive (73.03%). The results show that the system usefulness and interface quality ranked higher in 73% of the responses than
the overall feedback. The score for information quality did poorly in 73% of the responses than the overall feedback.

4.2. SUS evaluation results

System Usability Scale (SUS) [32] is one of the popular questionnaires, used for the assessment of usability (Table 5). It is
described as “quick and dirty” usability scale. The participant has to rate each question with a 5 point scale, where 5 is
strongly agree and 1 is strongly disagree.

The score of positive questions (1, 3, 5, 7, and 9) is the rating minus 1. The score of negative questions (2, 4, 6, 8, and 10) is
5 minus the rating. To obtain the overall score on a scale of 0–100, you add up the score values and multiply the sum by 2.5.

The score values of the different participants are presented in Table 6; the final average SUS score is 79.67. Table 7 provides
the SUS scores with their corresponding adjective and acceptability ratings. The results show that the proposed tool has a
“good” and “acceptable” level of usability. Likewise, results in Table 6 show that all participants rated usability above 65.

4.3. Microsoft Product Reaction Card evaluation results

The participants also rated their satisfaction about the tool by selecting minimum five words from the Microsoft Product
Reaction Card. Microsoft Reaction Card method [35] is developed by to check the emotional response and desirability of a
design or product. The participant is asked to describe a design/product using any number of the 118 words (Table 8) with
60% positive and 40% negative or neutral words.

In this study, 28 different words were chosen by the 15 participants (Fig. 13). Five of those words were negative and the
remaining 23 words were positive. On the positive side, 12 out of 15 participants (80%) chose the word “time-saving” to
describe their experience on the tool. They found it to be a “useful” (53%), “creative” (40%), “effective” (40%), “efficient” (27%)
and “usable” (27%) tool, which contributes to lowering the cost of data entry and improves productivity. Most of the par-
ticipants appreciated that the system was “easy-to-use” (67%) and “valuable” (20%). They specified that the results are
“clear” (33%) and “reliable” (67%). Two business users and an academic specified that it is a “business-like tool” (20%). The
words “connected”, “high quality”, “novel” and “satisfying” selected twice each (13%). Two words regarding the user
interface, “appealing” and “attractive”, were selected only once (7%). The other positive words selected only once (7%) were
“collaborative”, “fast”, “flexible”, “innovative”, “professional” and “sophisticated”.

On the negative side, the words “intimidating” and “too technical” were selected four times each (27%). They specified that at
the beginning the systemwas intimidating but after analyzing the example templates it was easy to create another one. As another
negative aspect most of the participants explicitly mentioned that the tool may be “too technical” (27%) and “advanced” (13%) for



T. Özacar / Information Systems 56 (2016) 36–54 51
users who lacks basic HTML knowledge. Regarding the ease of use, the negative word “rigid” is selected two times (13%). Con-
cerning the insufficient error messages and poor error handling, most users selected the word “fragile” (67%).
5. Conclusion and future work

This paper introduces a Protégé plug-in that collects product features from web and transforms this information into Good-
Relations snippets in RDFa or Microformats. The system attempts to solve an increasingly important problem: extracting useful
information from the product descriptions provided by the sellers and structuring this information into a common and sharable
format among business entities, software agents and search engines. It also presents a user-based evaluation accomplished using
15 different “real world” scenarios. During this evaluation work the tool is used in real business settings. A software company
decided to use the tool in order to get the product features of clothing products. Another company began preparations for using
the tool to monitor the price changes of products.

This work has a number of ongoing and future research directions. An ongoing work is integration with Google
Semantics3's Products API [36], which is a direct replacement for Google's Shopping API. Semantics3 aims to organize the
world's e-commerce data. It supports all of Google's Shopping API features and more, including additional features such as
UPC Lookups, Merchant Product URL Lookups, Merchant Product Catalog Retrieval, Product Variation Lookups, Historical
Pricing and Merchant Level Filtering. Semantics3 Product API gives developers comprehensive access to data across millions
of products and prices. The primary use of the API is to retrieve detailed and structured data about a specific product. The
queries can be performed against up to 50 different fields including “brand”, “name”’ and “price”. The data in Semantics3s
database is being constantly refreshed so all information is current and up to date. Developers can even make millions of
queries a day. The API is based on REST principles and request content is provided in JSON. We plan to improve the tool with
an extension that gets user queries and sends them to Semantics3 API in order to build a GoodRelations compliant product
ontology from the returned JSON responses.

Another potential future work is generating an environment for semi-automatic template construction. An environment
that automatically constructs the tree nodes from the selected HTML parts will significantly reduce the time to build a
template file. Beyond being integrated as a plug-in to Protégé, we also plan to deliver the application as a Java library. And
yet another future work is diversify the supported input/output formats. Currently, the system accepts only HTML pages, but
the choices can be increased with pdf and structured tabular formats (e.g. excel and csv). The output formats can also be
extended with different options like database output and csv output.
Appendix A



T. Özacar / Information Systems 56 (2016) 36–5452
Appendix B
Appendix C



T. Özacar / Information Systems 56 (2016) 36–54 53
Appendix D
References

[1] Q. Liu, H. Wang, H. Gao, Q. Lv, J. Fu, A recommendation method in e-commerce based on product taxonomy graph, in: Proceedings of the 2012
International Conference on Information Technology and Management Science (ICITMS 2012), Springer, Berlin, Heidelberg, 2013, pp. 411–422.

[2] W. Tang, Y. Hong, Y.-H. Feng, J.-M. Yao, Q.-M. Zhu, Simultaneous product attribute name and value extraction with adaptively learnt templates, in:
Proceedings of the 2012 International Conference on Computer Science and Service System, CSSS '12, IEEE Computer Society, Washington, DC, USA,
2012, pp. 2021–2025.

[3] F. Dominik, Semi-automatic web information extraction (Ph.D. thesis), Poznan University of Economics Department of Information Systems, 2011.
[4] O. Etzioni, The world wide web: quagmire or gold mine? Commun. ACM 39 (1996) 65–68.
[5] T. Özacar, IRIS: a Protégé plug-in to extract and serialize product attribute name-value pairs, in: Proceedings of the 11th Extended Semantic Web

Conference 2014, Crete, 2014.
[6] N. Noy, R. Fergerson, M. Musen, The knowledge model of protégé-2000: combining interoperability and flexibility, in: Knowledge Engineering and

Knowledge Management Methods, Models, and Tools, Lecture Notes in Computer Science, vol. 1937, Springer, Berlin, Heidelberg, 2000, pp. 17–32.
[7] M. Hepp, Goodrelations: an ontology for describing products and services offers on the web, in: Proceedings of the 16th International Conference on

Knowledge Engineering: Practice and Patterns, EKAW ’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 329–346.
[8] D. Siegel, Pull: The Power of the Semantic Web to Transform Your Business, 1st edition, Portfolio Hardcover, 2009.
[9] P. O'Dell, Silver Bullets: How Interoperable Data Will Revolutionize Information Sharing and Transparency, AuthorHouse, 2010.
[10] J. Han, Design of web semantic integration system (Ph.D. thesis), Tennessee State University. Electrical & Computer Engineering, 2008.

http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref4
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref4


T. Özacar / Information Systems 56 (2016) 36–5454
[11] A. Firat, Information integration using contextual knowledge and ontology merging (Ph.D. thesis), Massachusetts Institute of Technology, Sloan School
of Management, 2003.

[12] The xpath 2.0 Standard, W3c Recommendation 〈http://www.network-theory.co.uk/w3c/xpath/〉, 2007.
[13] I. Muslea, S. Minton, C. Knoblock, A Hierarchical Approach to Wrapper Induction, ACM Press, New York, NY, USA, 1999, 190–197.
[14] C.H. Chang, M. Kayed, M.R. Girgis, K.F. Shaalan, A survey of web information extraction systems, IEEE Trans. Knowl. Data Eng. 18 (10) (2006) 1411–1428.
[15] C. Leondes, Neural networks, fuzzy theory and genetic algorithms, Intelligent Knowledge-Based Systems: Business and Technology in the New

Millennium, vol. 5, Kluwer Academic, 2005.
[16] G. Huck, P. Fankhauser, K. Aberer, E.J. Neuhold, Jedi: extracting and synthesizing information from the web., in: Proceedings of the Third IFCIS

International Conference on Cooperative Information Systems, IEEE Computer Society, New York, NY, USA, 1998, pp. 32–43.
[17] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, V. Vassalos, J. Widom, The TSIMMIS approach to mediation: data

models and languages, J. Intell. Inf. Syst. 8 (2) (2004) 117–132.
[18] A. Sahuguet, F. Azavant, Wysiwyg web wrapper factory (w4f), in: Proceedings of the Eighth International WWW Conference, 1999.
[19] N. Kushmerick, D.S. Weld, R. Doorenbos, Wrapper induction for information extraction, in: Proceedings of the 15th International Joint Conference on

Artificial Intelligence, 1997.
[20] C. N. Hsu, M. T. Dung, Wrapping semistructured web pages with finite-state transducers, in: Proceedings of the Workshop on Learning from Text and

the Web, Conference on Automated Learning and Discovery, 1998.
[21] I. Muslea, S. Minton, C. Knoblock, Stalker: Learning extraction rules for semistructured, in: Proceedings of the 15th Workshop on AI and Information

Integration, 1998.
[22] L. Liu, C. Pu, W. Han, Xwrap: an xml-enabled wrapper construction system for web information sources, in: Proceedings of the 16th International

Conference on Data Engineering, 2000, pp. 611–621.
[23] R. Baumgartner, S. Flesca, G. Gottlob, Visual web information extraction with lixto, in: Proceedings of 27th International Conference on Very Large

Data Bases, 2001, pp. 119–128.
[24] B. Wu, X. Cheng, Y. Wang, Y. Guo, L. Song, Simultaneous product attribute name and value extraction from web pages, in: Proceedings of the 2009

IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, vol. 03, IEEE Computer Society, Washington, DC,
USA, 2009, pp. 295–298.

[25] W. Holzinger, B. Krüpl, M. Herzog, Using ontologies for extracting product features from web pages, in: International Semantic Web Conference,
Lecture Notes in Computer Science, vol. 4273, Springer, Athens, GA, USA, 2006, pp. 286–299.

[26] T.R. Gruber, A translation approach to portable ontology specifications, Knowl. Acquis. 5 (2) (1993) 199–220.
[27] Protégé Plug-in Library 〈http://protegewiki.stanford.edu/wiki/Protege_Plugin_Library〉 (last accessed: 2015-02-25).
[28] Htmlunit 〈http://htmlunit.sourceforge.net/〉.
[29] B.R.C. Alex Stolz, M. Hepp, RDF Translator: A RESTful Multi-Format Data Converter for the Semantic Web, Technical Report TR-2013-1, E-Business and

Web Science Research Group 2013.
[30] T. S. Tullis, J. N. Stetson, A comparison of questionnaires for assessing website usability., in: Proceedings of UPA 2004, 2004.
[31] J. R. Lewis, Psychometric Evaluation of the Computer System Usability Questionnaire: The Csuq, Technical Report 54.723, 1992.
[32] J. Brooke, Sus: a “quick and dirty” usability scale, in: P.W. Jordan, B. Thomas, B.A. Weerdmeester, I.L. McClelland (Eds.), Usability Evaluation in Industry,

Taylor and Francis, London, 1996.
[33] J.T. Miller, A. Bangor, P.T. Kortum, Determining what individual sus scores mean: adding an adjective rating scale, J. Usability Stud. 4 (3) (2009)

114–123.
[34] A. Bangor, P.T. Kortum, J.T. Miller, An empirical evaluation of the system usability scale, Int. J. Hum. Comput. Interact. 24 (6) (2008) 574–594.
[35] J. Benedek, T. Miner, Measuring desirability: new methods for evaluating desirability in a usability lab setting, in: Proceedings of UPA 2002 Conference

〈http://www.microsoft.com/usability/UEPostings/DesirabilityToolkit.doc〉, 2002.
[36] Semantics3 Inc., Semantics3—Apis for Products and Prices 〈https://www.semantics3.com/googleshoppingapi/quickstart〉, 2013.

http://www.network-theory.co.uk/w3c/xpath/
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref13
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref13
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref14
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref14
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref15
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref15
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref17
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref17
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref17
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref26
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref26
http://protegewiki.stanford.edu/wiki/Protege_Plugin_Library
http://htmlunit.sourceforge.net/
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref33
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref33
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref33
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref34
http://refhub.elsevier.com/S0306-4379(15)00166-0/sbref34
http://www.microsoft.com/usability/UEPostings/DesirabilityToolkit.doc
https://www.semantics3.com/googleshoppingapi/quickstart

	A tool for producing structured interoperable data from product features on the web
	Introduction
	Background knowledge and related work
	Scenario-based system specification
	Building a template file
	Building the ontology

	Evaluation
	CSUQ evaluation results
	SUS evaluation results
	Microsoft Product Reaction Card evaluation results

	Conclusion and future work
	References




