
The extension-based inference algorithm for pD*

Övünç Öztürk a,⁎, Tuğba Özacar a, Murat Osman Ünalır b

a Department of Computer Engineering, Celal Bayar University, Muradiye, 45140, Manisa, Turkey
b Department of Computer Engineering, Ege University, Bornova, 35100, İzmir, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 June 2010
Received in revised form 16 October 2011
Accepted 17 October 2011
Available online 25 October 2011

In this work, we present a scalable rule-based reasoning algorithm for the OWL pD* language.
This algorithm uses partial materialization and a syntactic ontology transformation (the
extension-based knowledge model) to provide a fast inference. Because the materialized
part of the ontology does not contain assertional data, the time consumed by the process,
and the number of inferred triples, remain fixed with varying amounts of assertional data.
The algorithm uses database reasoning and a query rewriting technique to handle the
remaining inference. The extension-based knowledge model and the database reasoning
prevent the expected decreases in query performances, which are the natural result of online
reasoning during query time. This work also evaluates the efficiency of the proposed method
by conducting experiments using LUBM and UOBM benchmarks.
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1. Introduction

The Semantic Web extends the current Web by structuring information to better enable computers and people to work in
cooperation. The Semantic Web is a Web of meaning: software agents understand what the entities on the Web mean, and can
make use of that knowledge. In the most influential Semantic Web article [1], ontologies are proposed as a flexible solution to
the problem of representing and sharing the meaning of specific knowledge [2]. A widely-cited paper [3] describes ontology as
“an explicit specification of a conceptualization.”

OWL is the W3C recommendation for creating and sharing ontologies on theWeb. An OWL ontology consists of two parts: the
intensional part, called the TBox, contains knowledge about classes, and relationships between the classes, and the extensional
part, known as the ABox, contains knowledge about entities, and how they relate to the classes and the roles of the intensional
part. TBox represents a very small percentage of the ontological data in most real world ontologies. In view of the number of
Web pages, it is apparent that reasoning on the Semantic Web will have to deal with very large ABoxes [4]. The ABox is not
only expected to be the largest part of an ontology but is also subject to frequent changes [5]. As the ABox of the ontology
grows, repetitions in the inference procedure increase, and the inference process slows at an exponential rate. Therefore, the
complexity of reasoning on the Semantic Web is closely related to the complexity of ABox reasoning, which is also called data
complexity.

In a nutshell, reasoning performance is perhaps the single biggest challenge relating to reasoning and SemanticWeb topics [6],
especially when considering that the number of linked datasets is growing. For example, the LOD (Linked Open Data) community1

aims to extend the Web with a data commons by publishing various open datasets as RDF (Resource Description Framework) on
the Web and by setting RDF links between data items from different data sources. In 2007, datasets consisted of over two billion
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RDF triples, which were interlinked by over two million RDF links. By 2010 this had grown to 25 billion RDF triples, interlinked by
approximately 395 million RDF links.

In this work, we propose a novel inference algorithm, namely the extension-based inference algorithm, for large-scale
ontological datasets. This algorithm employs both forward and backward rule engines in conjunction. For further optimization,
the algorithm uses extensions, which can be defined as partial sets of concept individuals. In [7], we used extensions with forward
chaining algorithm for scaling up RDFS reasoning. In this work, we also use database reasoning and backward chaining, to
increase the level of inference to pD*, which weakens the standard iff-semantics of OWL and extends RDFS entailment
(see Section 2, for if/iff semantics see [8]).

Our contributions in this work are as follows: (a) we define a syntactic transformation on pD* ontologies, (b) we present a ma-
terialization technique, which uses this transformation to perform scalable reasoning on large ABoxes. This technique filters the
ontology triples about individuals, and, as a consequence, time consumption of the reasoning process remains fixed even when
the size of the instance data increases, (c) we exploit the transformation and database reasoning for performing scalable query
answers, and (d) all of the notions in (a), (b), and (c) provide a reasonable complexity of reasoning and querying without sacrific-
ing too much expressive power.

The rest of this paper is organized as follows: in Section 2, we give some background knowledge about the field of ontology
reasoning. In Section 3, we focus on our modified knowledge representation formalism, “the extension-based knowledge
model.” In Section 4, we define extension-based reasoning and querying algorithms in detail. To further illustrate the
extension-based inference algorithm, we provide an example of running our algorithm in Section 5. Section 6 presents some
theoretical results about the complexity of the extension-based reasoning algorithm. We provide experimental results for our
approach using LUBM and UOBM benchmarks in Section 7. In Section 8, we compare our work with state-of-the-art reasoning
techniques. Finally, we offer our conclusions and future directions in Section 9.

2. Background knowledge

An ontology is an explicit specification of a conceptualization [3]. An ontology defines the terms used to describe and represent
an area of knowledge [9]. An ontology has two components, the TBox and the ABox. These components are defined in [10], as
follows:

• The TBox (assertions on concepts) stores assertions stating general properties of concepts and roles. For example, an assertion
of this type is the statement that a concept represents a specialization of another concept. The TBox of an ontology is more
resistant to change compared to extensional knowledge of the ABox.

• The ABox (assertions on individuals) comprises assertions on individual objects. A typical assertion in the ABox is the statement
that an individual is an instance of a certain concept. The ABox is usually the largest part of an ontology and is also subject to
frequent changes [5].

OWL (the Web Ontology Language) is a family of knowledge representation languages for authoring ontologies. OWL became
a W3C (World Wide Web Consortium) Recommendation, namely a web standard, in February 2004. OWL is built on top of RDFS,
RDF and XML. RDF and RDF Schema provide basic capabilities for describing vocabularies that describe resources. RDF Schema
contains primitives for defining classes, properties, subclass/subproperty relations, class individuals, and relations between
classes and class individuals. OWL extends these languages with a rich set of modeling constructors, which are presented in
Appendix A.

Reasoning is used to infer information that is not explicitly represented in an ontology. Reference [11] divides reasoning
strategies into two groups, as follows:

• DL reasoning paradigm: this paradigm is based on the notion of Classical Logics, such as Description Logics [12]. In this case, the
semantics of OWL ontologies can be handled by DL reasoning systems, such as Pellet [13], RacerPro [14] and Fact++ [15],
which reuse existing DL algorithms, such as tableaux-based algorithms [12].

• Datalog paradigm: in this case, a subset of the OWL semantics is transformed into rules that are used by a rule engine to infer
implicit knowledge.

The DL reasoning engines have an inefficient instance reasoning performance, whereas rules are insufficient to model
certain situations related to the open nature of the Semantic Web. Obviously, the selection of the most suitable modeling
paradigm depends on the domain and on the needs of the application. There are also other efforts that work to combine
both strategies. For example, CLIPS-OWL [16] incorporates the extensional results of DL reasoning in CLIPS production rule
programs.

The extension-based inference algorithm is designed for rule-based reasoning, which applies entailment rules to the
knowledge base to produce new facts. We present a definition of an entailment rule [17] that we follow in the rest of the paper:

Definition 1. An entailment rule for an ontology graph G is of the form,

s1 p1 o1h i s2 p2 o2h i… sn pn onh i→ s′1 p′1 o′1h i s′2 p′2 o′2h i… s′m p′m o′mh i;
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where n≥1, m≥1, si, s′i, pi and p′i are RDF URI references or blank nodes, and oi and o′i are RDF URI references, blank nodes or lit-
erals. The triples on the left-side of the rule denote the condition of the entailment and the triples on the right-side denote the
conclusion. The condition of the rule denotes the RDF triples that should exist in G, and the conclusion denotes the RDF triples
that should be added in G. If n=0, then all of the conclusion triples should always exist in G (axiomatic triples).

If m=0, then the entailment denotes that the triple pattern of the body should be viewed as inconsistent (inconsistency
entailment).

There are two types of rule-based reasoning algorithms, which are defined in [18], as follows:

• Forward chaining (offline reasoning): to start from known facts (explicit statements) and to perform inference in an inductive
fashion. An inferred closure is the extension of a KB (knowledge base) with all of the implicit facts that could be inferred
from it, based on the enforced semantics. Total materialization is the inference strategy, which performs total forward chaining
and computes the inferred closure of a KB. The advantages (+) and the disadvantages (−) of total materialization are listed
below:
+ Query performance is relatively better, because no reasoning is required at the time of query answering.
– Upload, storage, and addition and removal of new facts is relatively slow, because all the reasoning is performed during the

upload. Moreover, all of the reasoning is computed from scratch after adding or removing a new fact.
– The inference process requires considerable additional space (RAM, disk, or both).

The other inference strategy is partial materialization, which selectively computes a proper subset of the inferred closure to
reduce the disadvantages of total materialization.

• Backward chaining (online reasoning): to start from a specific fact or a query and to verify it or get all possible results (bindings
for free variables), using deductive reasoning.

Both of the above methods have advantages and disadvantages. Backward chaining has smaller storage requirements but is
slow in query answering. On the other hand, forward chaining is fast on query answering but has huge memory requirements.
There are other inference strategies that combine the two strategies and avoid the disadvantages of both. These have proven to
be efficient in many contexts [18].

Yet another issue regarding rule-based reasoning is to guarantee the completeness and the decidability of reasoning. There are
some works (such as RDF MT and RDFS(FA) [19]) that define sublanguages of the OWL and RDF languages and that reduce the
complexity and the time-consumption of reasoning. In this paper, we describe a reasoning engine for the pD* language that
weakens the standard iff-semantics of OWL and extends RDFS entailment. pD* Entailment is largely defined by means of “if con-
ditions”, and extends RDFS with datatypes and a property-related fragment of OWL (see Appendix B).

Due to the huge size of the Semantic Web ontologies, it will be necessary to use database technology to provide persistence to
the knowledge described by the ontologies, as well as scalability to the queries and reasoning on the knowledge [20]. Therefore,
relational databases are extensively used as an efficient means for storing ontologies. Database-based ontology repositories can be
divided into three major categories [21]: (a) generic RDF stores, which mainly use a relational table of three columns (Subject,
Property, Object) to store all triples (e.g., Jena [22] and Oracle [23]); (b) binary table-based stores, whose schema changes with
ontologies (e.g., DLDB-OWL [19]). In this kind of repository, a class table stores all instances belonging to the same class, and a
property table stores all triples that have the same property; and (c) improved triple stores, such as Minerva [24], OntoMinD
[25] and Sesame, manage different types of triples using different tables.

It is also interesting to note that, there are some works on efficient reasoning with modular ontologies in light of the fact that
reasoning engines need to only process the knowledge bases of the relevant modules (e.g., [26]).

3. Extension-based knowledge model

3.1. Extension-based knowledge model constructs

The extension-based knowledge model works on a simple principle, creating groups for individuals of a concept that is the ex-
tension or denotation of the concept. In this model, we define four types of grouping constructs:

hasClassExtension relates every class to one of its class extensions, which holds certain individuals (either explicit or implicit
individuals) of the class. A class extension is related to each of its members via a “contains” predicate. hasClassExtension has
two subproperties: hasExplicitClassExtension and hasInferredClassExtension. hasExplicitClassExtension relates the class to its
unique explicit class extension, which holds all explicit individuals of the class. The property hasInferredClassExtension relates
the class to one of its inferred class extensions, which holds a part of the inferred individuals of the class. Each inferred class
extension holds the individuals, which belong to one of the subclasses of the class. The union of the inferred class extensions
constitutes the individuals, which belong to the subclasses of the class.
Fig. 1 shows three classes and their explicit extensions. C1 has two subclasses, C2 and C3. E1 holds the explicit individuals of C1,
E2 holds the explicit individuals of C2, and E3 holds the explicit individuals of C3. In this case, there are hasExplicitClassExtension
relations between C1 and E1, C2 and E2, and C3 and E3. The implicit hasInferredClassExtension relations between class C1 and the
extensions E2 and E3 are inferred from hasExplicitClassExtension relations.
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hasSubjectExtension/hasObjectExtension relates every property (except “type”) to one of its subject/object extensions, which
holds the subjects/objects of certain individuals (either explicit or implicit individuals) of the property. A subject/object extension
is related to each of its members via a “contains” predicate. hasSubjectExtension/hasObjectExtension has two subproperties: hasEx-
plicitSubjectExtension/hasExplicitObjectExtension and hasInferredSubjectExtension/hasInferredObjectExtension. hasExplicitSubject-
Extension/hasExplicitObjectExtension relates the property to its unique explicit subject/object extension, which holds subjects/
objects of all explicit property individuals. hasInferredSubjectExtension/hasInferredObjectExtension relates the property to one of
its inferred subject/object extensions, which holds the subjects/objects of a subproperty of the property. The union of the inferred
subject/object extensions constitutes the individuals, which belong to the subproperties of the property.
Fig. 2 shows three properties and their explicit extensions. P1 has two subproperties, P2 and P3. S1 holds the subjects of explicit
individuals of P1. S2 holds the subjects of explicit individuals of P2, and S3 holds the subjects of explicit individuals of P3. Sim-
ilarly, O1 holds the objects of explicit individuals of P1; O2 holds the objects of explicit individuals of P2, and O3 holds the objects
of explicit individuals of P3. In this case, there are hasExplicitSubjectExtension/hasExplicitObjectExtension relations between P1
and S1/O1, P2 and S2/O2, and P3 and S3/O3. The implicit hasInferredSubjectExtension/hasInferredObjectExtension relations be-
tween property P1 and extensions S2/O2 and S3/O3 are inferred from hasExplicitSubjectExtension/hasExplicitObjectExtension
relations.
hasPropertyExtension relates every property (except “type”) to one of its extensions, which symbolizes certain individuals
(either explicit or implicit individuals) of the property. The construct hasPropertyExtension has two subproperties: hasExplicit-
PropertyExtension and hasInferredPropertyExtension. hasExplicitPropertyExtension relates the property to its unique explicit
property extension, which symbolizes all explicit individuals of the property. hasInferredPropertyExtension relates the property
to one of its inferred property extensions, which symbolizes the certain inferred individuals of the property. Each inferred
property extension holds the individuals, which belong to one of the subproperties of the property. The union of the inferred
property extensions constitutes the individuals, which belong to the subproperties of the property. This grouping construct
differs from the others in that it lacks a concrete extension. Its extension is an empty and virtual list, which is not related to
any of its items with a “contains” predicate. The reason for not keeping the individuals of this extension is to avoid a large in-
crease in the triple count, after transformation.

3.2. Extension-based knowledge model transformation algorithm

Transforming an OWL ontology to the extension-based knowledge model using Algorithm 1 involves a syntactic ontology
transformation and does not change the semantics of the ontology language.

Fig. 1. The relations between classes and their extensions.

Fig. 2. The relations between properties and their subject/object extensions.
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Algorithm 1. The transformation algorithm.

for each triple (spo) in ontology {

if predicate p is “rdf: type” {

if (class extension of object o is not defined)

add triple (o hasExplicitClassExtension ec)

substitute (s rdf: type o) with (ec contains s)

}

else

{

if (subject extension of predicate p is not defined)

add triple (p hasExplicitSubjectExtension es)

add triple (es contains s)

if (object extension of predicate p is not defined)

add triple (p hasExplicitObjectExtension eo)

add triple (eo contains o)

}

}

3.3. Extension-based knowledge model database schema

The extension-based knowledge model uses a generic RDF store, which is mainly constituted of two database tables: contains
and statements (Table 1). The contains table maps each extension member to its extension, and the statements table stores all of
the remaining triples in the ontology. In addition to these two tables, there are also auxiliary database tables, which are described
in Section 4.2.3.

4. Extension-based reasoning and querying

Fig. 3 shows the extension-based inference process. A syntactic transformation (see Section 3.2) is applied to the raw ontolog-
ical data. Both ontology schema and instance data are transformed to their equivalents in the extension-based knowledge model.
The reasoning on ontology schema is performed in the main memory by the forward chaining process; then, both closures of the
schema and the instance data are moved to the database. The rest of the inference is completed using database reasoning and
backward chaining (via a query rewriting mechanism, which will be described in Section 4.3).

4.1. Extension-based knowledge model entailment rules

The extension-based knowledge model uses a set of entailment rules, which contain the transformed pD* entailment rules and
additional rules that involve relationships between concepts and their extensions.

4.1.1. pD* Entailment rules
pD* Semantics extends the “if-semantics” of RDFS to a subset of the OWL vocabulary.2 pD* Provides reasonable computational

properties without sacrificing too much expressive power. The original pD* entailment rule sets [8] are given in Tables 24 and 25
in Appendix B. These rules are shown to be sound and complete with respect to the pD* semantics. In this section, we define a
guideline to transform pD* entailment rules into their equivalents in the extension-based knowledge model.

This transformation involves substituting conditions of pD* rules, which match members of an extension, for conditions that
will match the extension itself. Not every rule is transformed in this way. The transformed rules are executed during the forward
chaining process. The rules, which cannot be transformed, are applied during expanding the extensions or during query answering.
Fig. 4 shows rule patterns (P1 through P9) that are used to classify pD* entailment rules.

Table 1
The columns of contains and statements tables.

Table name The name of columns

contains extension_name, resource
statements subject, predicate, object

2 RDF and OWL differ in the way in which their semantics is defined. The semantics of RDF and RDFS is defined using if conditions, whereas the semantics of
OWL uses many if-and-only-if conditions. A semantics that uses iff conditions in its specification is more powerful, in the sense that it leads to more entailments
[8].
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A pattern is the conjunction of the following statements (s1 through s7), where R is the rule that matches the pattern, c is a
condition of R, subjc is the subject of c, predc is the predicate of c, objc is the object of c, lhsR is the left-hand-side of R, rhsR is the
right-hand-side of R, CondABox is the set of all possible conditions involving ABox, and CondTBox is the set of all possible conditions
involving TBox:

• S1:∀c ∈ lhsR(c ∈ CondTBox: all conditions in the LHS (left hand-side) of the rule involve TBox.
• S2:∃c1 ∈ lhsR(predc1=rdf : type): there is at least one condition with a “type” predicate in the LHS of the rule.
• S3:∀c ∈ lhsR(c ∈ CondABox): all conditions in the LHS of the rule involve ABox.
• S4:∃c1 ∈ lhsR(c1 ∈ CondABox∧predc1≠rdf : type): there is at least one condition matching with a property individual in the LHS of
the rule.

• S5:∀c ∈ rhsR(predc=rdf: type): the condition on the RHS (right hand-side) of the rule has “type” predicate.
• s6 :∃c1∈ lhsR(predc1=owl :hasValue∨predc1=owl :someValuesFrom∨predc1=owl :allValuesFrom)Z: there is at least one condi-
tion involving property restrictions in the LHS of the rule.

engine
rules
forward chaining
extension−based

DB

schema
raw ontology

ontology schema

in extension−based
instance data

knowledge model

data
raw instance

knowledge model
in extension−based

forward chaining deductions engine

closure of the
ontology schema

extension−based
backward chaining
rules

backward chaining query

Fig. 3. The extension-based inference process.

Table 3
The D* entailment rules after transformation.

rdfs2: p domain u ∧ p hasSubjectExtension e⇒u hasInferredClassExtension e
rdfs3: p range u ∧ p hasObjectExtension e ⇒u hasInferredClassExtension e
rdfs4a :p hasSubjectExtension e⇒Resource hasInferredClassExtensione
rdfs4b :p hasObjectExtension e⇒Resource hasInferredClassExtension e
rdfs5:v subPropertyOf w∧w subPropertyOf u⇒v subPropertyOf u
rdfs6:v hasExplicitPropertyExtension e⇒v subPropertyOf v
rdfs7x. I :p subPropertyOf q∧p hasPropertyExtension e⇒q hasInferredPropertyExtension e
rdfs7x. II :p subPropertyOf q∧p hasObjectExtension e⇒q hasInferredObjectExtension e
rdfs7x. III :p subPropertyOf q∧p hasSubjectExtension e⇒q hasInferredSubjectExtension e
rdfs8:v hasExplicitClassExtension e⇒v subClassOf Resource
rdfs9:v subClassOf w∧v hasClassExtension e⇒w hasInferredClassExtension e
rdfs10:v hasExplicitClassExtension e⇒v subClassOf v
rdfs11:v subClassOf w∧w subClassOf u⇒v subClassOf u

Table 2
The patterns that identify when the rules are executed.

ID Rules matched with the pattern [X]

P1 rdfs5, rdfs11, rdfp12a, rdfp12b,rdfp12c, rdfp13a, rdfp13b, rdfp13c F n

P2 rdfs6, rdfs8, rdfs10, rdfp9, rdfp10 F t

P3 rdfs9, rdfs4a, rdfs4b F t

P4 rdfs7x F t

P5 rdfp14bx ε
P6 rdfp14a, rdfp15, rdfp16 Q
P7 rdfs2, rdfs3 F t

P8 rdfp5a, rdfp5b, rdfp6, rdfp7,rdfp11 E
P9 rdfp1, rdfp2, rdfp3, rdfp4, rdfp8ax, rdfp8bx F t , E
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• s7 :∃c1∈ lhsR(objc1=owl :TransitiveProperty∨objc1=owl :SymmetricProperty∨objc1=owl :FunctionalProperty∨objc1=owl :
InverseFunctionalProperty∨predc1=owl : inverseOf)Z: there is at least one condition involving property characteristics in the LHS
of the rule.

Table 2 shows the pD* entailment rules matching the specified patterns and identifies when these rules are executed. In this
table, [X] represents the rule execution interval. The rules are executed in one or more of the following intervals: during the for-
ward chaining process (F t means that the rule is transformed, F n means that the rule is applied without any transformation);
during expanding the extensions (E); or during the query answering process (Q).

In the remainder of this section, we describe how to transform the original rules of p and D* languages according to the
extension-based knowledge model, and we describe the effects of these transformations. The transformed rules can be found
in Tables 3 and 4.

The transformations of the D* rules rdfs9 (matches P3) and rdfs7x (matches P4), affect the reasoning process the most. The rule
rdfs9 infers a “type” relation between each individual of a class c and each superclass of c. A high percentage of the inferred “type”
relations are derived by this rule. After rule transformation, this rule derives a relation between each extension of a class c and
each superclass of c. Let nI be the number of individuals of c, and let sc be the number of superclasses of c, then after rule trans-
formation, nI×sc (the number of “type” relations derived by the rule rdfs9) is reduced to sc. Similarly, rdfs7x links each individual
of a property p to each superproperty of p. After rule transformation, this rule derives a relation between each extension of a prop-
erty p and each superproperty of p. Let nt be the number of individuals of p, and let sp be the number of superproperties of p; then,
after rule transformation, nt×sp (the number of relations derived by the rule rdfs7x) is reduced to sp.

The D* rules rdfs2 (matches P7) and rdfs3 (matches P7) are the rules involving domains and ranges of properties. The rule
rdfs2/rdfs3 infers a “type” relation between each subject/object of a property individual and the domain/range class of that prop-
erty. After rule transformation, this rule derives a relation between each subject/object extension of a property p and each do-
main/range class of p. Let nt be the number of individuals of p, and let sd/sr be the number of domain/range classes of p. Then,
after rule transformation, nt×sd/nt×sr (the number of relations derived by the rule rdfs2/rdfs3) is reduced to sd/sr.

The D* rules rdfs4a(matches P3) and rdfs4b(matches P3) derive that the subject and the object of every triple is an individual of
the Resource class. In most cases, these rules double or triple the number of triples in the ontology. After rule transformation, these
rules derive a relation between each subject and object extension of a property and the Resource class. Let ns be the member count
of the set containing the subjects of individuals of property p and let no be the member count of the set containing the objects of
individuals of property p; then, after rule transformation, ns+no (the maximum number of relations derived from the rules rdfs4a
and rdfs4b) is reduced to 2 (one for relating the subject extension to the Resource class and the other for relating the object ex-
tension to the Resource class).

rdfs6, rdfs8 and rdfs10 are the D* rules matching P2. Transforming these rules does not affect the performance of the reasoning,
but transformation is necessary to preserve the completeness and the soundness of the reasoning. The rules rdfs6 and rdfs10 de-
rive that every concept is a subclass/subproperty of itself. The rule rdfs8 derives that each class is a subclass of the Resource class.
After applying the extension-based knowledge model transformation algorithm (see Section 3.2), the concepts differ from the
other ontology resources in that each concept has either a class or a property extension. After rule transformation, rdfs6 and
rdfs10 derive each ontology resource having a class/property extension as a subclass/subproperty of itself. The rule rdfs8 derives
that each ontology resource having a class extension is a subclass of the Resource class.

rdfs5 (matches P1) and rdfs11 (matches P1) are the D* rules involving the schema (TBox) of the ontology. These rules have
nothing to do with individuals or extensions in the ontology. Therefore, these rules participate in the reasoning process as they
are, without any transformation.

Table 4
The p entailment rules after transformation.

rdfp1:p type FunctionalProperty∧p hasPropertyExtension e⇒p hasFunctionalPropertyExtension e
rdfp2:p type InverseFunctionalProperty∧p hasPropertyExtension e⇒p hasInverseFunctionalPropertyExtension e
rdfp3:p type SymmetricProperty∧p hasPropertyExtension e⇒p hasSymmetricPropertyExtension e
rdfp4:p type TransitiveProperty∧p hasPropertyExtension e⇒p hasTransitivePropertyExtension e
rdfp5a :u p w⇒u sameAs u rdfp5b :u p w⇒w sameAs w
rdfp6:v sameAs w⇒w sameAs v rdfp7:u sameAs v∧v sameAs w⇒u sameAs w
rdfp8ax. I :p inverseOf q∧p hasPropertyExtension e⇒q hasInversePropertyExtension e
rdfp8bx. I :p inverseOf q∧q hasPropertyExtension e⇒p hasInversePropertyExtension e
rdfp8ax. II :p inverseOf q∧p hasInversePropertyExtension e⇒q hasPropertyExtension e
rdfp8bx. II :p inverseOf q∧q hasInversePropertyExtension e⇒p hasPropertyExtension e
rdfp9:v hasExplicitSubExtension e∧v sameAs w⇒v subClassOf w
rdfp10:p hasExplicitPropertyExtension e∧p sameAs q⇒p subPropertyOf q
rdfp11:u p v∧u sameAs u′∧v sameAs v′⇒u′ p v′
rdfp12a :u equivalentClass w⇒u subClassOf w
rdfp12b :u equivalentClass w⇒w subClassOf u
rdfp12c :v subClassOf w∧w subClassOf v⇒v equivalentClass w
rdfp13a :v equivalentProperty w⇒v subPropertyOf w
rdfp13b :v equivalentProperty w⇒w subPropertyOf v
rdfp13c :v subPropertyOf w∧w subPropertyOf v⇒v equivalentProperty w
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Unlike the D* entailments, the p entailment rules are related to the OWL language. The rules rdfp12a, rdfp12b, rdfp12c, rdfp13a,
rdfp13b and rdfp13c are the p rules matching P1. They involve schema (TBox) of the ontology. Therefore, they participate in the
reasoning process as they are, without any transformation.

The p rules, rdfp9 (matches P2) and rdfp10 (matches P2), derive that if a concept x is related to another resource y with the
“owl:sameAs” predicate, then x is a sublass/subproperty of y. After rule transformation, rdfp9 and rdfp10 derive that if an ontology
resource x has a class/property extension and x is related to another resource y with “owl:sameAs” predicate, then x is a sublass/
subproperty of y. Transforming these rules does not affect the performance of the reasoning, but transformation is necessary to
preserve the completeness and the soundness of the reasoning.

The rules rdfp14bx, rdfp5a, rdfp5b, rdfp6, rdfp7 and rdfp11 are the p entailment rules matching P5 and P8. As a result, they are
executed in the phase of expanding the extensions (see Section 4.2.4). The rules rdfp14a, rdfp15 and rdfp16 are the p entailment
rules matching P6, which are executed in the phase of query answering.

The rules rdfp1, rdfp2, rdfp3, rdfp4, rdfp8ax, and rdfp8bx are the p entailment rules that are executed both in the forward chain-
ing and in the expanding the extensions phases. These rules each involve OWL property characteristics. In the forward chaining pro-
cess, some auxiliary relations about property characteristics are derived. These auxiliary relations are used in the phase of
expanding extensions to help the computation of relations relying on property characteristics. The p entailment rule rdfp1 derives
that if a property p is a FunctionalProperty, and the subject denotes a resource that is the subject of two p individuals, then the
objects of these p individuals have the same denotation (are equivalent); in other words, the objects with two different URIs de-
note one and the same resource. After transformation, this rule derives a hasFunctionalPropertyExtension relation between a Func-
tionalProperty and its property extension. The p entailment rule rdfp2 derives that if a property p is an InverseFunctionalProperty
and the object denotes a resource that is the object of two p individuals, then the subjects of these p individuals have the same
denotation. After transformation, this rule derives a hasInverseFunctionalPropertyExtension relation between an InverseFunctional-
Property and its property extension.

The p entailment rule rdfp3 derives new statements by switching the subject and the object of every SymmetricProperty indi-
vidual. After transformation, this rule derives a hasSymmetricPropertyExtension relation between a SymmetricProperty and its
property extension. The rule rdfp4 derives that if a property p is a TransitiveProperty, and the object of an individual (t1) of p is
the subject of another individual (t2) of p, then a new individual of property p is derived by linking the subject of t1 and the object
of t2. After transformation, this rule derives a hasTransitivePropertyExtension relation between a TransitiveProperty and its property
extension.

The p entailment rules rdfp8ax and rdfp8bx derive that if a property p1 is inverseOf a property p2, then a new individual of prop-
erty p2 is derived by switching the subject and the object of every individual of p1, and vice versa. These rules are transformed to
rdfp8ax-I, rdfp8ax-II, rdfp8bx-I and rdfp8bx-II. This new rule set:

• Links the property extensions of p1 to property p2 with hasInversePropertyExtension, and vice versa.
• Links the inverse property extensions of p1 to property p2 with hasPropertyExtension, and vice-versa.

4.1.2. Additional rules
The extension-based knowledge model extends the rules in Tables 3 and 4 with some additional rules (Table 5). After execut-

ing the eight rules derived by the grammar S1 in Table 5, all extensions of a concept are accessible using only one query condition
with a “has(Class-Subject-Object-Property)Extension” predicate. These rules reduce the number of conditions of the transformed
pD* rules and the rewritten queries in the query answering process (see Section 4.3).

The five rules derived by the grammar S2 in Table 5 are used to ensure that the extensions of properties having characteristics
are linked to their superproperties properly. These links are used in the phase of expanding extensions (see Section 4.2.4).

Table 6
Computing the final extensions of the example properties.

Property name Extension definition

p1 sym(e1+e2+e3+ tran(e4)+e5)
p2 e2
p3 e3+ tran(e4)+e5
p4 tran(e4)
p5 e5

Table 5
Additional rules involving concept extensions.

S1 :=“p has”(“Explicit” |“ Inferred”)G1“Extension e⇒p has”G1“Extension e”
G1 :=(“Class” |“Subject ” |“Object” |“Property”)
S2 :=“p subPropertyOf q∧p has”G2“PropertyExtension e⇒q has”G2“PropertyExtension e”
G2 :=(“Symmetric ” |“Transitive ” |“Functional ” |“ InverseFunctional ” |“ Inverse”)

179Ö. Öztürk et al. / Data & Knowledge Engineering 72 (2012) 172–201



4.2. Reasoning process

The reasoning process includes the following steps: (a) filtering triples, (b) applying the forward chaining algorithm, (c) pro-
cessing the extensions, and (d) expanding the extensions. These steps are described in the following subsections.

4.2.1. Filtering triples
The aim of the forward chaining algorithm is to infer the statements about ontology schema and extension-concept relations.

The forward chaining process makes the maximum possible inferences about instance data using extensions instead of using the
instance data itself. Therefore, the ontology triples about individuals are filtered, and only the triples about ontology schema (and
relations between concepts and their extensions) participate in reasoning. As a result, time consumption of the reasoning process
remains fixed even if the size of the instance data increases.

4.2.2. Applying the forward-chaining algorithm
In this phase, we apply the forward chaining algorithm on the transformed schema of the ontology, using the transformed pD*

rules (Tables 3 and 4). At the end of the reasoning process, statements about concepts, extensions and the relations between them
are inferred.

4.2.3. Processing the extensions
This phase is the prerequisite for the next phase (see Section 4.2.4). In this phase, we create the database tables, which store

the property restrictions and property characteristics. These tables are used in the next phase. This phase includes the following
steps:

• Step-I: storing data about property restrictions and set operators on class extensions,
• Step-II: storing data about property characteristics.

Table 8
Number of class/property individuals in the example ontology.

Class name Individual count Property name Individual count

ResearchGroup 2 subOrganizationOf 5
Department 3 worksFor 10
University 5 degreeFrom 10
Professor 10 headOf 3

Table 9
Extensions of anonymous classes.

Extension name In definition of Anonymous class of extension

εα1
Chair α1=Person∩∃headOfDepartment

εα2
Employee α2=Person∩∃worksForOrganization

εα3
GraduateStudent α3=Person∩∃ takesCourseGraduateCourse

εα4
Student α4=Person∩∃ takesCourseCourse

εα5
Chair α5=∃headOfDepartment

εα6
Employee α6=∃worksForOrganization

εα7
GraduateStudent α7=∃ takesCourseGraduateCourse

εα8
Student α8=∃ takesCourseCourse

Table 7
SQL queries involving connector nodes.

hasValue(C,p,v)⇒ SELECT T :subject
FROM δ Ωp

� �
AS T

WHERE T :object ¼ v

someValuesFrom(CX,p,CY)⇒
SELECT T2:subject
FROM γ ΩCY

� �
AS T1; δ Ωp

� �
AS T

WHERE T1:resource ¼ T2:object

allValuesFrom(CX,p,CY)⇒

SELECT T2:subject
FROM γ ΩCY

� �
AS T1; δ Ωp

� �
AS T2

GROUP BY T2:subject
HAVING object IN T

intersectionOf(C,C1,…,Cn)⇒ ((γ(ΩC1
)INTERSECT γ(ΩC2

))⋯)INTERSECT γ(ΩCn
)

unionOf(C,C1,…,Cn)⇒ ((γ(ΩC1
)UNION γ(ΩC2

))⋯)UNION γ(ΩCn
)
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In the first step, we create and fill the PropertyRestrictionsOnClassExtensions, SetOperatorsOnClassExtensions and ConstraintsOn-
ClassExtensions tables. These tables are defined as follows:

• PropertyRestrictionsOnExtensions: stores the extensions of classes, which are defined by property restrictions (owl:someVa-
luesFrom, owl:allValuesFrom or owl:hasValue). This table includes the following fields: the URI of the extension (extensionUri),
the type of restriction (restrictionType), the URI of the restricted property (onProperty), and the URI of the class or value, to
which the range of property is constrained (classOrValueUri).

• SetOperatorsOnExtensions: stores the extensions of classes, which are constructed using the set operations (owl:unionOf and
owl:intersectionOf). SetOperatorsOnExtensions includes the following fields: the URI of the extension (extensionUri), the name of
the operator (setOperator) and the classes to which the set operator is applied (listOfClasses).

• ConstraintsOnClassExtensions: stores all extensions of the classes, which are defined by property restrictions or set opera-
tions. ConstraintsOnClassExtensions includes the following fields: the URI of the extension (extensionUri), and the type of exten-
sion (extensionType), whose value may be either “extensionWithPropertyRestriction” or “extensionWithSetOperator.”

In the second step, we create and fill the PropertiesWithCharacteristics table. The PropertiesWithCharacteristics includes the fol-
lowing fields: the URI's of properties with characteristics (propertyUri), and four boolean fields (sym, tran, func, and invfunc),
whose values are determined according to the characteristics of the property.

4.2.4. Expanding the extensions
After the forward chaining process, the closure of the ontology and the instance data are moved to the database. For the sake of

query performance, some implicit instance data and data about further types of extensions are computed in the database before
the query answering process. In this phase, we compute this data in the following three steps:

• Step-I: expanding related extensions with inferred instance data relying on the owl:hasValue restriction,
• Step-II: expanding related property extensions with inferred instance data relying on transitive and symmetric property
characteristics,

• Step-III: deriving sameAs relations relying on Functional and InverseFunctional properties.

In the first step, we process the inferred property individuals relying on the owl:hasValue property restriction. The inferred
property individuals, which are derived using the p rule rdfp14bx (Table 25 in Appendix B) are added to the statements table as
well as to the subject and object extensions of the related properties.

The second step involves expanding related property extensions with inferred instance data relying on transitive and symmet-
ric property characteristics. A property usually has more than one extensions. To expand these extensions according to the

Table 10
PropertyRestrictionsOnExtensions table.

extensionUri restrictionType onProperty classOrValueUri

εα5
someValuesFrom headOf Department

εα6
someValuesFrom worksFor Organization

εα7
someValuesFrom takesCourse GraduateCourse

εα8
someValuesFrom takesCourse Course

Table 11
SetOperatorsOnExtensions table.

extensionUri setOperator listOfSetElements

εα1
intersection Person, α5

εα2
intersection Person, α6

εα3
intersection Person, α7

εα4
intersection Person, α8

Table 12
ConstraintsOnClassExtensions table.

extensionUri εα1
εα2

εα3
εα4

εα5
εα6

εα7
εα8

extensionType set set set set restriction restriction restriction restriction

Property name Extension definition

p1 sym(e1+e2+e3+ tran(e4)+e5)
p2 e2
p3 e3+ tran(e4)+e5
p4 tran(e4)
p5 e5
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property characteristics properly, it is necessary to apply these characteristics on the union of these extensions instead of apply-
ing them on each extension separately. Assume that p is a transitive property having extensions e1={a p b, c p d} and e2=
{d p e, f p g}. If we apply the transitivity characteristic on each extension separately, no new triple is derived. On the other
hand, if we apply the transitivity characteristic on the union of these extensions (e1∪e2={a p b, c p d, d p e, f p g}), a new triple
(c p e) is derived.

Here, we present an example to describe how to expand extensions using property characteristics. Fig. 5 shows five properties, p1,
p2, p3, p4 and p5, with extensions e1, e2, e3, e4 and e5, respectively. The property p1 is a symmetric property, and p4 is a transitive property.

To correctly compute the effects of property characteristics on property extensions properly, the expanding process starts with
the extensions of properties, which are at the bottom of the property hierarchy. Table 6 shows the final property extensions after
applying the property characteristics. Let S be a triple set, p be a transitive property, t1 and t2 be two triples with predicate p, and
the object of t1 be the subject of t2. Then, for each t1∈S and t2∈S, tran(S) adds a new triple to S by linking the subject of t1 and the
object of t2. Let S be a triple set, p be a symmetric property and t1 be a triple with predicate p. Then, for each t1∈S, sym(S) adds a
new triple to S by switching the subject and the object of t1. After expanding the extensions process, the newly computed triples
are added to the statements table, and the subjects and objects of these triples are added to the subject and object extensions of
corresponding properties. The sym(S) and tran(S) characteristics are applied by exploiting triggers offered by DBMS. Thus, the
order of applying these characteristics is not important, if the property is both transitive and symmetric.

The last step involves deriving sameAs relations relying on Functional and InverseFunctional properties using the rdfp1 and
rdfp2 rules (see Table 25 in Appendix B). The inferred triples are stored in the SameAs table, which stores the identical individual
pairs in its individual1 and individual2 fields.

4.3. Query answering process

The query3 answering process involves building a query tree and creating the corresponding SQL query. The query tree has
three kinds of nodes:

• Root Node: each query tree has one and only one root node. The root node keeps information about constraints and relations
between query conditions. The constraints of a condition involve the constants of the condition. The relations between condi-
tions involve the common variables of these conditions.

3 The inference engine accepts conjunctive queries that combine its conditions by conjunction. A condition is a triple in which each member of the triple (sub-
ject, predicate and object) may be an unbounded (free) or a bounded variable. The unbounded variables are distinguished by the “?” character occurring at the
beginning of the variable name.

Table 15
Ontology loading times (ms) for standard and optimized inference engines with subsets of LUBM (1,0).

Number of triples

21,729 41,828 62,062 81,752 100,881

Parsing Standard 3756 4349 4847 6283 7893
Optimized 1834 3439 4599 5774 7934

Transformation Standard – – – – –

Optimized 1127 1776 2464 3267 4083
Reasoning Standard 46,022 169,344 294,549 499,776 756,506

Optimized 384 305 305 309 297
Total (Loading) Standard 49,778 173,693 299,396 506,059 764,399

Optimized 3345 5520 7368 9350 12,314

Table 14
Data statistics for the LUBM and UOBM benchmarks.

LUBM UOBM

Number of classes 43 (22) 51 (41)
Number of Datatype properties 7 (3) 9 (5)
Number of Objecttype properties 25 (14) 34 (24)
Property individuals per university 90,000–110,000 210,000–250,000
Class individuals per university 8000–15,000 10,000–20,000

Table 13
PropertiesWithCharacteristics table.

propertyUri transitive symmetric functional inv-functional

subOrganizationOf + – – –
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• Resource Nodes: each resource node (r) contains a query component (Ωr), which contains a table called memory. The resource
nodes are classified into three node groups according to their query components:
Class Nodes: an memory of a class node query component stores the names of extensions, which belong to a particular class.
OWL defines two types of classes: named classes and anonymous classes. Therefore, an memory of a class node stores either
the names of named class extensions or the names of anonymous class extensions. If all of the extensions in the memory of a
class node are named class extensions, then this node is a basic class node. Otherwise, this node is a complex class node.
Property Nodes: an memory of a property node query component stores two kinds of information: (a) the names of extensions,
which belong to a particular property p and (b) the relations (hasPropertyExtension or hasInversePropertyExtension) between

Table 16
Query execution times (ms) for standard (S) and optimized (O) inference engines with subsets of LUBM (1,0) (21,729 to 100,881 triples).

21,729 41,828 62,062 81,752 100,881

S O S O S O S O S O

Q1 67 1 89 2 81 3 86 3 122 4
Q2 61 3 124 11 162 21 222 37 273 56
Q3 20 1 55 1 64 1 74 1 89 1
Q4 114 193 309 337 379 486 413 721 555 926
Q5 376 102 1000 194 1025 321 1362 406 1651 474
Q6 44 165 100 366 131 512 192 746 267 839
Q7 76 95 183 213 210 323 273 466 379 593
Q8 1032 22 4870 43 8144 60 16,701 84 24,717 99
Q9 1344 13 7270 28 12,561 38 23,109 54 38,456 67
Q10 8 1 20 1 24 1 32 1 40 1
Q11 18 1 74 1 57 2 75 2 94 2
Q12 35 81 92 198 107 261 159 535 194 448
Q13 19 89 43 177 53 256 69 382 83 441
Q14 33 7 53 14 98 21 136 29 194 33

Table 17
Ontology loading times (ms) for standard and optimized inference engines with subsets of UOBM(1,0).

Number of triples

54,605 106,285 157,922

Parsing Standard 5241 10,452 16,722
Optimized 4414 8314 14,131

Transformation Standard – – –

Optimized 2558 5539 8983
Reasoning Standard 61,009 244,877 649,904

Optimized 1497 2210 2809
Total (Loading) Standard 66,250 255,329 666,626

Optimized 8469 16,063 25,923

Table 18
Query execution times (ms) for standard (S) and optimized (O) inference engines with subsets of UOBM(1,0) (54,605 to 157,922 triples).

54,605 106,285 157,922

S O S O S O

Q1 124 5 222 15 320 14
Q2 31 128 60 243 90 452
Q3 249 768 520 1498 810 810
Q4 702 337 3568 805 7650 2181
Q5 62 1 110 1 170 2
Q6 156 2039 472 6520 850 12,323
Q7 93 676 454 1517 560 2007
Q8 62 701 512 2715 200 5937
Q9 109 21 233 45 320 114
Q10 31 1 50 1 90 2
Q11 1762 952 9027 1864 24,466 3105
Q12 2730 387 12,160 839 38,782 1218
Q13 62 622 93 2855 160 4890
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each property extension and property p. The OWL language does not provide for the use of anonymous properties. Therefore, all
extensions in an memory of a property node belong to named properties.
Individual/Value Nodes: an memory of an individual/value node query component stores either an individual name or a value.
If there are other individuals that are related to the individual via an “owl:sameAs” relation, then the names of these individuals
are also stored in the memory.

• Connector Nodes: for each anonymous class extension in a complex class node (η), a connector node is added to the children of η.
Unlike resource nodes, connector nodes do not contain an memory. Connector nodes are classified into seven groups, according
to the OWL construct that is used to identify the corresponding anonymous class (ς) in the parent node (η): intersection nodes,
union nodes, someValuesFrom nodes, allValuesFrom nodes, cardinality nodes, maxCardinality nodes, minCardinality nodes and has-
Value nodes.

Table 19
Ontology loading times (ms) for Jena, Pellet and the optimized inference engines with subsets of LUBM (1,0).

Number of triples

21,729 41,828 62,062 81,752 100,881

Parsing Optimized 1834 3439 4599 5774 7934
Jena 2584 3261 4249 4608 5209
Pellet 1922 2819 3347 5166 6128

Transformation Optimized 1127 1776 2464 3267 4083
Jena – – – – –

Pellet – – – – –

Reasoning Optimized 384 610 305 309 297
Jena 37,339 170,569 187,072 223,678 364,500
Pellet 1669 2018 2262 2967 9773

Total (Loading) Optimized 3345 5825 7368 9350 12,314
Jena 39,923 174,818 190,333 228,887 369,108
Pellet 3591 4837 5609 8133 15,901

Table 20
The query answering performances of Jena, Pellet and the optimized inference engine.

Number of triples

21,729 41,828 62,062 81,752 100,881

O J P O J P O J P O J P O J P

Q1 1 23 21 2 32 33 3 26 47 3 22 42 4 24 54
Q2 3 12,953 336,763 11 – – 21 – – 37 – – 56 – –

Q3 1 62 41 1 50 51 1 58 74 1 79 79 1 96 101
Q4 193 7539 12 337 17,801 13 486 23,615 22 721 33,497 21 926 43,776 28
Q5 102 78 39 194 162 62 321 252 98 406 362 113 474 388 133
Q6 165 5 53 366 10 82 512 15 140 746 14 160 839 18 178
Q7 95 5982 11,390 213 26,665 45,020 323 50,008 98,264 466 88,389 174,516 593 143,870 301,111
Q8 22 310 2967 43 1048 15,096 60 2440 30,899 84 4207 57,300 99 7140 119,173
Q9 13 577,557 1,109,700 28 – – 38 – – 54 – – 67 – –

Q10 1 22 47 1 36 101 1 48 190 1 67 190 1 83 233
Q11 1 24 7 1 120 13 2 336 20 2 642 21 2 1542 35
Q12 81 3 11 198 4 32 261 5 74 535 6 110 448 8 229
Q13 89 88 19 177 168 42 256 227 65 382 566 87 441 376 121
Q14 7 6 11 14 9 18 21 16 24 29 12 33 33 18 45

Table 21
The ontology loading performances of optimized inference engine and OWLIM.

1 5 10 20 50

Optimized 11,764 80,564 248,326 468,996 846,407
OWLIM 1000 21,000 66,000 125,000 239,000
Optimized/OWLIM 11.764 3.836381 3.762515 3.751968 3.541452

184 Ö. Öztürk et al. / Data & Knowledge Engineering 72 (2012) 172–201



For each class, property, individual or value, which is referred to in the definition of ς, a class, a property or an individual/value
node is added to the children of the connector node.

The components of the query tree are ranked in three layers: (a) the first layer contains the root node, (b) the second layer con-
tains the direct children of the root node, and (c) the third layer contains all of the children of the nodes in the second layer. The
query tree is constructed in three phases (initial phase, growth phase and final phase), which are described in the following
subsections.

Table 22
The completeness of Minerva and DLDB2 on the UOBM queries.

Q1 Q2 Q3–8 Q9 Q10–12 Q13

DLDB2 100% 95% 100% 0% 100% 80%
Minerva 100% 100% 100% 100% 100% 61%

Table 23
Comparison of existing approaches and extension-based inference algorithm.

SHER Minerva OWLDB DLDB Jena Ext-based

Database schema G C G C G G
Summarization + − − − − +
Materialization P T T T T P
Paradigm DL DL+RB RB DL RB RB
Works in M DB DB M+DB M M+DB
Supported language OWL DL OWL DL OWL DL DAML+OIL OWL Lite pD*

Table 25
The p entailment rules.

rdfp1:p type FunctionalProperty∧up v∧u p w⇒v sameAs w
rdfp2:p type InverseFunctionalProperty∧u p w∧v p w⇒u sameAs v
rdfp3:p type SymmetricProperty∧v p w⇒w p v
rdfp4:p type TransitiveProperty∧u p v∧v p w⇒u p w
rdfp5a :v p w⇒v sameAs v rdfp5b :v p w⇒w sameAs w
rdfp6:v sameAs w⇒w sameAs v rdfp7:u sameAs v∧v sameAs w⇒u sameAs w
rdfp8ax :p inverseOf q∧v p w⇒w q w rdfp8bx :p inverseOf q∧v q w⇒w p v
rdfp9:v type Class∧v sameAs w⇒v subClassOf w
rdfp10:p type Property∧p sameAs q⇒p subPropertyOf q
rdfp11:u p v∧u sameAs u′∧v sameAs v′⇒u′ p v′
rdfp12a :u equivalentClass w⇒u subClassOf w
rdfp12b :uequivalentClass w⇒w subClassOf u
rdfp12c :u subClassOf w∧w subClassOf u⇒u equivalentClass w
rdfp13a :v equivalentProperty w⇒w subPropertyOf v
rdfp13b :v equivalentProperty w⇒v subPropertyOf w
rdfp13c :v subPropertyOf w∧w subPropertyOf v⇒v equivalentProperty w
rdfp14a :v hasValue w∧v onProperty p∧u p w⇒u type v
rdfp14bx :v hasValue w∧v onProperty p∧u type v⇒u p w
rdfp15:v someValuesFrom w∧v onProperty p∧u p x∧x type w⇒u type v
rdfp16:v allValuesFrom w∧v onProperty p∧u type v∧u p x⇒x type w

Table 24
The D* entailment rules.

rdfs2:p domain u∧v p w⇒v type u rdfs3:p range u∧v p w⇒w type u
rdfs4a :v p w⇒v type u rdfs4b :v p w⇒w type u
rdfs5:v subPropertyOf w∧w subPropertyOf u⇒v subPropertyOf u
rdfs6:v type Property⇒v subPropertyOf v rdfs7x :p subPropertyOf q∧v p w⇒v q w
rdfs8:v type Class⇒v subClassOf Resource rdfs9:v subClassOf w∧u type v⇒u type w
rdfs10:v type Class⇒v subClassOf v
rdfs11:v subClassOf w∧w subClassOf u⇒v subClassOf u

185Ö. Öztürk et al. / Data & Knowledge Engineering 72 (2012) 172–201



4.3.1. Initial phase
This phase constructs the nodes in the first and second layers. For each condition in the query, a class or a property node is

created and added to the children of the root node in the following way:

• For each query condition with a “type” predicate (type(?x,C)), a class node is created and the memory of this node is filled with
the results of the following query: hasClassExtension(C, ?ε).

• For each query condition with a predicate other than “type” (?p(?x,C)), a property node is created and the memory of this node
is filled with the results of the following queries:
– hasPropertyExtension(?p,?ε): the relation between the property and the ?ε values are stored as hasPropertyExtension in the

memory.
– hasInversePropertyExtension(?p,?ε): the relation between the property and the ?ε values are stored as hasInversePropertyEx-

tension in the memory.

4.3.2. Growth phase
The growth phase is about expanding the query tree until all leaf nodes are equal to either an individual/value node, a property

node or a basic class node. Expanding a tree node (η) involves expanding anonymous class extensions in the memory of the node
using PropertyRestrictionsOnClassExtensions, SetOperatorsOnClassExtensions and ConstraintsOnClassExtensions tables. For each
anonymous class extension (ε) in the memory, a connector node is added to the children of η. The type of the connector node
is read from the restrictionType field in the RestrictionComplexExtensions table or from the setOperator field in the SetComplexExten-
sions table.

If the connector node is an intersection or union node, then for each item in the listOfSetElements field in the SetComplexExten-
sions table, a new class node is added to the children of the connector node. For other types of connector nodes, a class node (read
from the classUri field in the RestrictionComplexExtensions table) and a property node (read from the onProperty field in the
RestrictionComplexExtensions table) are added to the children of the connector node. If the newly added child contains complex
class nodes, then these children are expanded in the same way. The iterative node expansion algorithm continues until each
leaf node is equal to an individual/value node, a property node or a basic class node. If a newly added child node (α) is equal

Fig. 4. Executing rules using patterns.

Fig. 5. An example property hierarchy.
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to one its ancestors, then the Termination_Method (α) is triggered. This method prevents the addition of a child to the newly
added α node by removing all anonymous class extensions in the memory of this node.

4.3.3. Final phase
This phase builds an SQL query using the query tree built in the growth phase. The building process starts with conjoining the

computation results of the second layer nodes according to the constraints and relations specified in the root node. Second layer
nodes are class or property nodes, which are computed by the following methods:

• If the node is a basic class node (ΩC), then the γ(ΩC) function computes basic class extensions in memory of the ΩC node and
unifies the results. Each basic class extension (εbasic) is computed with the following SQL query:
– Qεbasic:SELECT resource FROM contains WHERE extension=εbasic

• If the node is a property node (Ωp), then the δ(Ωp) function computes the property extensions in memory of the Ωp node and
unifies the results. Each extension, which is related to the property with a hasPropertyExtension predicate, is computed via Qεp+

.
Each extension, which is related to the property with a hasInversePropertyExtension predicate, is computed via Qεp−.
Qεp+

:SELECT subject, object FROM statements WHERE predicate=ρ
Qεp−:SELECT subject AS object, object AS subject FROM statements WHERE predicate=ρ

• If the node is a complex class node, then each child of the node is computed and the results are unified with computations of the
basic class extensions in the memory (using Qεbasic). Each child node of the complex class node is a connector node, which is com-
puted using the corresponding SQL query (S1) in Table 7. If S1 requires the computation results of basic class nodes or property
nodes, these nodes are computed using Qεbasic, Qεp+

and Qεp−. If S1 requires the computation result of a complex class node, then a
corresponding SQL query (S2) in Table 7 is created and nested in query S1. This nesting process continues iteratively until there
is no complex class node to compute.

5. Running example

This section describes the extension-based inference algorithm using an example ontology, which is a subset of the well-
known LUBM (Lehigh University Benchmark) [27] ontology schema.

Fig. 6 shows the schema of the example ontology. In addition to the information in the figure, it is also necessary to note that
subOrganizationOf is a transitive property and hasAlumnus is an inverse property of degreeFrom. Table 8 shows the numbers of
class/property individuals.

The following subsections describe how the extension-based inference algorithm is applied to the example ontology.

5.1. Transforming an example ontology into the extension-based ontology model

After transforming the example ontology into its equivalent in the extension-based knowledge model, we derive the following
16 triples about extension-concept relations: (*) four hasExplicitClassExtension relations for classes in Table 8 (*) four hasExplicit-
SubjectExtension relations, four hasExplicitObjectExtension relations and four hasExplicitPropertyExtension relations for properties in
Table 8. After transformation, a maximum of 76 contains relations are derived: (*) 20 contains relations for 20 (2+3+5+10)
class individuals (Table 8); (*) a maximum of 28 contains relations for relating the subjects of 28 (5+10+10+3) property individ-
uals (Table 8) to the corresponding subject extensions (if there are n individuals of property p having the same subjects, then the
number of contains relations to be added is reduced by n−1); and (*) a maximum of 28 contains relations for relating the objects

Organization

ResearchGroup Employee

Person

GraduateStudent

Student

Course

Faculty
University

Chair

Professor

Department

Fig. 6. Example ontology schema.
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of 28 property individuals to the corresponding object extensions. If there are n individuals of property p having the same objects,
then the number of contains relations to be added is reduced by n−1.

5.2. Filtering triples of the example ontology and the forward chaining process

Filtering triples of the example ontology prevents instance data from participating in reasoning. Let ηS be the number of on-
tology schema triples; then, without applying the model, the number of triples participating in reasoning is ηS+20+28 (20
class individuals, 28 property individuals). After applying the model, only triples of ontology schema (ηS) and extension-
concept relations participate in reasoning. Before applying the extension-based knowledge model, 71 triples are inferred with
the example ontology. After applying the extension-based knowledge model, this number is reduced to 11. The utility of the
model is in direct proportion to the ratio of instance data. Even with a small amount of instance data in the example ontology,
the inferred triples are reduced by 84.5%.

5.3. Processing the extensions in the example

In Step-I and Step-II (see Section 4.2.3), data about property restrictions, set operators and property characteristics are stored
in the corresponding database tables, as shown in Tables 10–13. Table 9 shows the definitions of anonymous classes, their exten-
sions and the classes, whose definition refers to these anonymous classes.

5.4. Expanding the extensions in the example

Step-I (see Section 4.2.4) makes no change because there is no anonymous class defined using the owl:hasValue property re-
striction in the example ontology. In Step-II (see Section 4.2.4), the following triples are added to the statements table {rg01 sub-
OrganizationOf univ01, rg02 subOrganizationOf univ01}. The subjects and objects of these triples are also added to the subject/
object extensions of the subOrganizationOf property, by adding the proper fields to the contains table. Step-III (see
Section 4.2.4) makes no change because there is no functional or inverse functional property in the example ontology.

Fig. 7. The query tree after expanding εα1
.
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5.5. Example queries

To exemplify the query answering process, we use the Example Query 1: (?X type Person). The query has only one condition
with a “type” predicate, and therefore only one class node is added to the children of the root node. There is no information
added to the root node about the constraints and relations between query conditions.

The initial phase is completed by filling the memory of the class node with the extensions of the Person class (εPerson, εα1
, εα2

,
εα3

, εα4
). The extensions are obtained using the following query: hasClassExtension(Person,?ε).

In the growth phase, the children of the anonymous class extensions in the memory of the node (εα1
, εα2

, εα3
, εα4

) are added to
the query tree. The first anonymous class extension is εα1

, which belongs to the anonymous class α1. The class α1 is defined as
Person∩{∃headOf Department}. Fig. 7 shows the query tree after expanding the children of εα1

.
The children of the connector node Ω∩ contain the class node ΩPerson, which is equal to one of its ancestors. Therefore, the

Termination Method (ΩPerson) is triggered, and all anonymous class extensions in the memory of the newly added ΩPerson node
are removed. Expansion of the tree ends when all leaf nodes equal an individual/value node, a property node or a basic class
node (Fig. 8).

The example query has only one condition; therefore, the corresponding SQL query (S-Ex1) unifies the computations of the
children of ΩPerson with the results of the basic class extensions in the memory of ΩPerson in the following way:

• S−Ex1:QεPersonUNION Q1 UNION Q2 UNION Q3 UNION Q4

QεPerson computes the only basic class extension (εPerson) in the memory as follows:

• QεPersonZ:SELECT resource FROM contains WHERE extension=εPerson.

Fig. 8. The final state of the query tree (Example Query 1).
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Q1 (SQL 1), Q2 (SQL 2), Q3 (SQL 3), and Q4 (SQL 4) compute the complex class extensions εα1
, εα2

, εα3
, and εα4

, respectively. εα1

involves the computation of a connector nodeΩ∩. One of the children (ΩPerson) of the connector node is terminated; therefore, the
SQL query of this node is reduced to QεPerson. The other child (Ω∃) is converted to SQL using Table 7 (SQL 1). One of the children of
the Ω∃ node is a property node, whose memory is filled with the extensions, which are related to the property via a hasProper-
tyExtension or a hasInversePropertyExtension predicate.

SQL 1 SQL query Q1

(SELECT resource FROM contains
WHERE extension=explicit class extension of Person)
INTERSECT
(SELECT T2.subject FROM
(SELECT resource FROM contains
WHERE extension=explicit class extension of Department) AS T1,
(SELECT subject,object FROM statements WHERE predicate=headOf) AS T2
WHERE T1.resource=T2.object)

SQL 2 SQL query Q2

(SELECT resource FROM contains
WHERE extension=explicit class extension of Person)
INTERSECT
(SELECT T2.subject FROM
(SELECT resource FROM contains
WHERE extension=explicit class extension of Organization
OR extension=explicit class extension of University
OR extension=explicit class extension of Department
OR extension=explicit class extension of ResearchGroup) AS T1,
(SELECT subject,object FROM statements
WHERE predicate=worksFor OR predicate=headOf) AS T2
WHERE T1.resource=T2.object)

SQL 3 SQL query Q3

(SELECT resource FROM contains
WHERE extension=explicit class extension of Person)
INTERSECT
(SELECT T2.subject FROM
(SELECT resource FROM contains
WHERE extension=explicit class extension of GraduateCourse) AS T1
(SELECT subject,object FROM statements WHERE predicate=takesCourse) AS T2
WHERE T1.resource=T2.object)

SQL 4 SQL query Q4

(SELECT resource FROM contains
WHERE extension=explicit class extension of Person)
INTERSECT
(SELECT T2.subject FROM
(SELECT resource FROM contains
WHERE extension=explicit class extension of Course
OR extension=explicit class extension of GraduateCourse) AS T1
(SELECT subject,object FROM statements WHERE predicate=takesCourse) AS T2
WHERE T1.resource=T2.object)

Example Query 2 is as follows:(?X type Chair) ⋀(?Y type Department) ⋀(?X worksFor?Y)⋀(?Y subOrganizationOf “http://www.
University0.edu”). This query has multiple conditions; therefore, the root node keeps information about constraints and relations
between query conditions. In this query, the subjects of the first and third conditions, the subjects of the second and fourth con-
ditions, and the object of the third condition are the same. The object of the fourth condition is a constant (“http://www.
University0.edu”).

The root node has four children nodes, including two class (ΩChair and ΩDepartment) and two property nodes (ΩworksFor and Ω-
subOrganizationOf). One of these class nodes (ΩChair) is a complex class node. Fig. 9 shows the final state of the query tree. The expan-
sion of the (ΩPerson) node is shown in Fig. 8; thus, it is not repeated here. The corresponding SQL query of Example Query 2 (S-Ex2)
is given in SQL 5. Query S-Ex1 is given in the previous example and is also not repeated here.
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SQL 5 SQL query Q5

SELECT T1.subject
FROM
((S-Ex1 INTERSECT (SELECT T1.subject FROM
(SELECT resource FROM contains
WHERE extension=explicit class extension of Department) AS T0,
(SELECT subject,object FROM statements WHERE predicate=headOf) AS T1
WHERE T0.resource=T1.object))
UNION
(SELECT resource FROM contains
WHERE extension=explicit class extension of Chair)) AS T2),
(SELECT resource FROM contains
WHERE extension=explicit class extension of Department) AS T3,
(SELECT subject,object FROM statements
WHERE predicate=worksFor OR predicate=headOf) AS T4,
(SELECTsubject,object FROM statements
WHERE predicate=subOrganizationOf) AS T5
WHERE T2.resource=T4.subject
AND T3.resource=T5.subject AND T3.resource=T4.object
AND T5.subject=T4.object

6. Complexity analysis

We use the RETE algorithm to implement our forward chaining inference. RETE takes O(nf× f×c) time per inference iteration
where nf is the number of forward chaining rules, f is the number of facts and c is the average number of conditions of the forward
chaining rules [28]. The total time for a forward chaining inference is O(nf×c×(f1×S+ f2×(S−1)+…+ fS)), where S is the total
number of states and fi is the newly available data items in each state in the composition schema.

The extension-based reasoning algorithm increases the performance of the reasoning process by reducing the number of facts
participating in reasoning and the number of facts inferred in each cycle.

Fig. 9. The final state of the query tree (Example Query 2).
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LetO be an ontology,n Oð Þ be the number of triples,Rtype
O be the number of type relations, andRP

O be the number of instances of
all of the properties except for the type property; then,

n Oð Þ ¼ Rtype
O þRP

O:

After transformation, every type relation between a class and its individual is replaced with a contains relation between the
classExtension of the class and the individual. As a result, the number of contains relations in the transformed ontology is equal
to Rtype

O . Let CO be the number of classes in the ontology. Because a hasExplicitClassExtension relation is added to every class, we
add CO new triples to the transformed ontology. Then, for every instance of a property other than type (e.g. A U;Bð Þ), we add
two new relations to the ontology (contains(SEA;U), contains(Oℰ_A,ℬ)). As a result, the number of instances of a property
other than type (RP

O) is tripled (3�RP
O) in the transformed ontology. LetPO be the number of properties in the ontology. Because

three relations are added (hasExplicitSubjectExtension, hasExplicitObjectExtension and hasExplicitPropertyExtension) to every prop-
erty that is not a type property, we add 3� PO triples to the transformed ontology. The transformation overhead is O(f), where f,
namely n Oð Þ, is the number of facts in the ontology (see Algorithm 1).

LetO′ be the transformed version of ontologyO and let Δ1 be the increase in the number of triples after transformation, i.e., the
difference between n Oð Þ and n O′

� �
; then,

n O′
� �

¼ Rtype
O þ CO þ 3�RP

O þ 3� PO
Δ1 ¼ CO þ 2�RP

O þ 3� PO
:

After transformation, only a small number of triples participates in reasoning. These triples contain the schema knowledge of
the ontology and contain the relations between concepts and their extensions (CO þ 3� PO). The number of these triples (f′) are
computed as follows, where fABox is the number of triples from individual data, and f is the number of facts participating in for-
ward chaining before applying the extension-based inference algorithm:

f ′ ¼ f−f ABox þ CO þ 3� PO:
We still make reasoning on the schema but we prevent ABox triples to participate in reasoning. Because the schema level rea-

soning is not affected by the transformation, the decrease in the number of inferred triples equals the decrease in the number of
inferred triples about individuals. Additional facts about grouping predicates are derived, but these derivations are small enough to
be negligible. The number of these additional facts (n(fgroupingPred)) is computed as follows, where n(fsubclassOf) is the number of
inferred subclass relations, n(fsubpropertyOf) is the number of inferred subproperty relations, n(ffunctionalProperties) is the number of
functional properties, n(finverseFunctionalProperties) is the number of inverse functional properties, n(fsymmetricProperties) is the number
of symmetric properties, n(ftransitiveProperties) is the number of transitive properties, and n(finverseProperties) is the number of proper-
ties that are the subject or object of the “owl:inverseOf” relations:

n f groupingPred
� �

¼ n f subclassOf
� �

þ 3� n f subpropertyOf
� �

þ n f functionalProperties
� �

þ n f inverseFunctionalProperties
� �

þ n f symmetricProperties

� �

þ n f transitiveProperties
� �

þ n f inverseProperties
� �

:

In a nutshell, the transformation leads to an increase in the triple count. However, only the ontology schema triples participate
in reasoning, and, as a result, the memory and time consumption of reasoning decreases dramatically. Moreover, the memory and
time consumption of the reasoning and the number of inferred triples remain fixed, even when the size of the instance data in-
creases. The utility of the approach increases with increasing amounts of instance data.

7. Evaluation

We evaluated the performance of the extension-based reasoning algorithm using the LUBM (Lehigh University Benchmark)
[27] and UOBM (University Ontology Benchmark) [29] benchmarks. Table 14 shows the data statistics for these benchmarks
[29]. The number of classes and properties used to define ABox are denoted in the bracket. Some classes and properties are
used only to define class and property hierarchies in TBox and are not used to restrict individuals directly. The experiments
were conducted on a laptop computer with 2 GB RAM and a Core 2 Duo T7700@2.4 GHz processor. The software configuration
was as follows: Windows Vista Business 32 bit operating system. The .NET runtime environment version 2.0 and Sqlite database
management system was used. Our standard inference engine is a Rete [30] based inference engine. The optimized inference en-
gine is a version of the standard inference engine, which applies the extension-based inference algorithm.

We evaluated the inference algorithm using the followingmetrics: (a) Building time: the amount of time required to read an on-
tology file and to transform the file to the reasoner's datamodel inmemory; (b) Loading time: the amount of time required to load an
ontology.We define the term “ontology loading” as the total process of parsing, extension-basedmodel transformation, inference and
property characteristics materialization. The three factors that affect ontology loading performance are the number of triples partic-
ipating in the inference (ηtpi), the number of inferred triples (ηit) and the number of total triples (ηt). The number of triples loaded per
second (ηtps) is another metric to evaluate the loading performance [18]; (c) Space consumption: the space consumption involves
the memory (ηm) and the disk sizes (ηdb) that the inference algorithm uses. The factors that affect the space consumption are the
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number of triples participating in the inference (ηtpi), the number of inferred triples (ηit), and the number of total triples (ηt); and (d)
Query execution time: a metric to evaluate the query performances is the query execution time per result (qeps).

7.1. Experiment 1

This experiment compares the standard and optimized inference engines using subsets of the LUBM(1,0) data set, which is the
largest data set that the standard inference engine can process. The loading times are given in Table 15. The optimized inference en-
gine performs better because both building and reasoning times are reduced after optimization. The building time is reduced because
not all of the triples, but only triples that participate in reasoning, are transformed to the data model in memory. The transformation
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Fig. 10. The linear increase in the transformation overhead with increasing sizes of instance data (up to LUBM(1,0)).
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Fig. 11. (a) Utilization rate in ontology loading time with increasing sizes of instance data (up to LUBM(1,0)). (b) The ratio of the number of triples participating in
reasoning with increasing sizes of instance data (up to LUBM(1,0)).
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overhead is presented in Fig. 10. The triples with ontology individuals do not participate in reasoning; as a result the reasoning time is
also reduced. The number of triples participating in reasoning and the time consumption of the reasoning process remain fixed, even
if the size of the instance data increases. The utilization rate for the loading time4 increases with the size of the instance data
(Fig. 11(a)). Fig. 11(b) shows the ratio of the number of triples participating in reasoning to the number of total triples.

4 The utilization rate is the ratio of the loading time of the standard inference engine to the loading time of the optimized inference engine.

 100

 1000

 10000

20000 30000 40000 50000 60000 70000 80000 90000 100000

T
rip

le
s 

pe
r 

S
ec

on
d

Triple Count

Standard
Optimized

 0

 50

 100

 150

 200

20000 30000 40000 50000 60000 70000 80000 90000 100000

S
pa

ce
 C

on
su

m
pt

io
n 

[M
b]

Triple Count

Standard
Optimized

a

b
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Fig. 12(a) shows the number of triples loaded per second (ηtps) as a function of the data size. In the standard inference engine, the
value of ηtps is reduced significantlywith increasing amounts of instance data. In contrast, in the optimized inference engine, the value
of ηtps remains almost fixed. The space consumption is also improved by up to 60% in the optimized inference engine (Fig. 12(b)).

Table 16 shows theeffect of the algorithmon the performances of 14 LUBMqueries (Q1–Q14 in Table 26 inAppendixC)with subsets
of LUBM (1,0) (21,729 triples–100,881 triples). As the table shows, nine queries are positively affected, and five queries are negatively
affected. Becauseweuse backward chaining reasoning, a decrease is expected in performances of all queries. Using the extension-based
knowledge model and the database reasoning results in a general improvement in query performances. The optimized algorithm per-
forms worse in some cases due to non-optimized SQL queries. We think that our query performance can still be improved with some
pruning algorithms on the query tree or by using a database system, which has a built-in query optimizer (see Section 9).

7.2. Experiment 2

This experiment compares the standard and optimized inference engines using a more complex ontology schema. As a standard
OWL ontology benchmark, the LUBM has two limitations. First, the LUBM does not completely cover either OWL Lite or OWL DL in-
ference. For example, inference on the cardinality and allValuesFrom restrictions cannot be tested by the LUBM. In fact, the inference
supported by this benchmark is only a subset of OWL Lite. Some real ontologies are more expressive than the LUBM ontology. The
UOBM extends the LUBM by adding extra TBox axioms, making use of all of OWL Lite and OWL DL. Second, the extended benchmark
generates instance data sets in a more reasonable way. The necessary links between individuals from different universities make the
test data form a connected graph rather than multiple isolated graphs. This will guarantee the effectiveness of scalability testing.

In the UOBM test data, every university contains 15 to 25 departments, each described by a separate OWL file. The generated
instance data may form multiple relatively isolated graphs and may lack necessary links between the graphs. More precisely, the
benchmark generates individuals (such as departments, students and courses) at a university as a basic unit. Individuals from a
university do not have relations with individuals from other universities.

We use subsets of the UOBM(1,0) data set, which are the largest data sets that the standard inference engine can process. The
UOBM benchmark includes two distinct datasets for OWL-Lite and OWL-DL. The complexity of pD* is between that of RDFS and
OWL Lite; therefore, we use the UOBM dataset for OWL-Lite in this experiment. Both standard and optimized inference engines
gave 100% complete answers to 13 UOBM queries in Table 26 in Appendix C. The performance results of this experiment are
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Fig. 14. (a) Utilization rate in ontology loading time with increasing sizes of instance data (up to UOBM(1,0)). (b) The ratio of the number of triples participating
in reasoning with increasing sizes of instance data (up to UOBM(1,0)).
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parallel with the results of Experiment 1 (Tables 17, 18, Figs. 13–15). The parsing and transformation processes are not affected by
the extra TBox axioms. However, the number of TBox triples participating in reasoning is increased; thus, the reasoning process is
longer in comparison to a LUBM dataset of the same size.

7.3. Experiment 3

This experiment evaluates the optimized inference engine with larger data sets (LUBM(1,0) to LUBM(50,0)). The utility of the
extension-based inference algorithm is proven with a decrease in the number of triples participating in the inference and the
number of inferred triples.

Fig. 16 shows the ratio of the number of total triples to the number of triples participating in reasoning and to the number of
inferred triples. These ratios, and consequently, the utility of the algorithm, increase logarithmically with the size of the data set.
For example, increasing the data set by 60 times results in an increase in the utility by 1000 times.
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Fig. 16. The utility of the extension-based inference algorithm with increasing sizes of instance data (up to LUBM(50,0)).
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Fig. 15. (a) The number of triples loaded per second for the standard and optimized inference engines with increasing sizes of instance data (up to UOBM(1,0)).
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7.4. Experiment 4

In this experiment, we compare the performances of the optimized inference engine with the existing reasoners, including
Jena,5 Pellet,6 and OWLIM7 [31]. The optimized inference engine outperformed Jena with all datasets (Table 19). On the other
hand, Pellet performed slightly better with smaller datasets, but when the dataset was large enough (in this case, 100,881 triples),
the optimized inference engine scaled better (Table 19). The query answering performance is evaluated using 14 queries of the
LUBM benchmark. Table 20 shows the results of LUBM queries. The optimized inference engine outperformed Jena and Pellet in
9 queries. Jena and Pellet outperformed the optimized inference engine in 5 queries, which is a reasonable result especially
when you consider the performance penalties caused by backward chaining. Besides, the query response time is planned to be
reduced with further optimizations (see Section 9).

OWLIM is the most scalable semantic database. Table 21 compares the ontology loading performances of the optimized infer-
ence engine with OWLIM using varying sizes of the LUBM data set. OWLIM outperforms the optimized inference engine, but the
optimized inference engine reduces the difference with increasing sizes of instance data. In other words, the optimized inference
engine is slower but scales better for larger data sets.

8. Comparison with other approaches

In this section, we briefly present some of the research literature addressing the scalability issue with respect to the develop-
ment and deployment of knowledge base systems on the Semantic Web. The rest of this section lists the existing systems and
compares the extension-based inference algorithm with them in terms of reasoning, querying and storage strategies.

The extension-based inference algorithm uses a partial materialization strategy. The forward chaining process makes the max-
imum possible inference about the instance data using extensions instead of using instance data. The remaining inference about
instance data is completed via database reasoning and backward chaining. Reducing the load in the backward chaining process,
results in a decrease in the complexity of the rewritten queries. For example, [32] describes a schema-closure reasoning approach,
which computes schema statements (schema closure) with forward reasoning, and uses a query rewriting technique to handle
inferences on instance data. However, because the extension-based inference algorithm infers all of the facts about the instance
data by backward reasoning, the query rewriting process results in more complex queries compared to our approach. The follow-
ing example shows the difference between two approaches with an instance retrieval query:

schema−closure :
type ?i;Cð Þ⇒ subClassOf ?Cs;Cð Þ∧type ?i;Cð Þð Þ∨
subClassOf ?Cs;Cð Þ∧subPropertyOf ?ps;pð Þ∧domain p;Csð Þ∧?ps ?i; ?xð Þð Þ∨
subClassOf ?Cs;Cð Þ∧subPropertyOf ?ps;pð Þ∧range p;Csð Þ∧?ps ?x; ?ið Þð Þ
extension−based :
type ?i;Cð Þ⇒hasClassExtension C; ?εð Þ∧contains ?ε; ?ið Þ:

Our query answering algorithm, creates an initial query tree using the closure of the schema, and then sprouts this tree according
to our node expansion algorithm. Finally, the algorithm transforms the query tree into its SQL equivalent and executes this SQL query.
The use of extension-based knowledge model and database technology results in a general improvement in query performances.

SHER ([33,34]) is a scalable DL reasoner developed at IBM. SHER's reasoning technique relies on a novel combination of index-
ing the instances of the database from the perspective of reasoning. This indexing technique summarizes the instance data into a
very compact representation that is used for reasoning. SHER uses this representation to efficiently filter instance data that is ir-
relevant for answering a certain query, and selectively decompresses portions of the summarized representation relevant for the
query, in a process called refinement. The combination of summarization and refinement is the key to SHER's scalability. SHER per-
forms membership query answering as well as conjunctive query answering using a set of optimization techniques, which lever-
age summarization in the context of conjunctive querying, and also incorporate faster incomplete reasoning techniques into
query answering. SHER therefore can be used to get fast, incomplete answers to queries. This faster algorithm can help retrieve
large result sets for most queries within a minute or two [35]. However, the instance retrieval queries used in [35] are simpler
than the UOBM queries (Q1–Q13 in Appendix C). SHER uses the approach of query answering through inconsistency checking,
which is an expensive approach for an application on conjunctive queries. According to [18], this concern could be the explana-
tion for why [35] provides no results from evaluation with the original UOBM queries.

Our extension-based knowledge model resembles SHER in that the reasoning is performed on the summary of ontologies, but
the two approaches use very different summarization mechanisms. The extension-based summarization mechanism is based on
the TBox of the ontology. In contrast, “Summary Abox” is based on instance data; thus, whenever the ABox data changes, the sum-
marization process starts from scratch. When you consider that the ABox is not only expected to be the largest part of an ontology
but is also subject to frequent changes [5], then a summarization mechanism on the Tbox of an ontology is much more reasonable

5 We used Jena API version 2.6.4 in Java version 1.6.0. We chose OWL_MEM_MICRO_RULE_INF from the OntModelSpec, which creates an ontology object in
memory and makes Jena use the micro OWL rules inference engine.

6 We used Pellet version 2.2.2 with Jena.
7 Version 2.9.1.
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than the one on the ABox of an ontology. Another disadvantage of using SHER is that the queries that SHER can answer are limited
and the query answers are incomplete.

Minerva [24] is a storage and inference system for large-scale OWL ontologies on top of relational databases.Minerva aims tomeet
scalability requirements of real applications and provides practical reasoning capability aswell as high query performance. Themeth-
od combines Description Logic reasoners for the TBox inferencewith logic rules for the ABox inference. Furthermore, it customizes the
database schema based on inference requirements. User queries are answered by directly retrieving materialized results from the
back-end database. A drawback of Minerva in comparison to the extension-based inference algorithm is that Minerva can only an-
swer a fraction even of the OWL Lite queries completely. For example, Minerva is incomplete on Q13 of the UOBM queries (Table 22).

OWLDB [36] is a lightweight and extensible approach for the integration of relational databases and description logic based
ontologies. The inference rules are translated into queries on a relational DBMS instance, and the query results are added back
to this database. The OWLDB differs from the extension-based inference algorithm in that it uses a total materialization technique,
which requires considerable additional disk space. Besides, the extension-based inference algorithm prevents the inference of
type relations. Therefore, the space consumption of ABox reasoning is reduced dramatically.

DLDB2 [37] is a knowledge base system that combines a relational database management system with additional capabilities
for partial OWL reasoning. DLDB2 [37] delegates TBox reasoning to a DL reasoner and pre-computes the subsumption hierarchy.
The system uses table schema, database views, and algorithms that achieve essential ABox reasoning over an RDBMS. DLDB2 has
very fast load times because the inferred closure of the database is not calculated at load time, but its querying is slow [38]. An
advantage of the system is that because the closure is only calculated when queries are posed on the system, updates and deletes
can be performed on the system.

Our extension-based inference algorithm resembles DLDB2 in that it uses RDBMS to achieve scalable ABox reasoning. The
extension-based inference algorithm is complete on all LUBM and UOBM queries. DLDB2 is also complete on all LUBM queries
but is incomplete on 3 out of 13 UOBM queries. The incomplete UOBM queries (Q2, Q9, and Q13) are because DLDB2 is not
able to perform inference based on universal restrictions and cardinalities (Table 22) [37].

Jena [22] uses a hybrid reasoner, which employs both of the forward and backward rule engines together. Ontologies can be
stored either in memory or in a database. The database schema is a generic RDF store, which is based on a relational statement
table of three columns (Subject, Property, and Object) to store all triples. However, unlike other generic RDF stores, Jena uses mul-
tiple statement tables. Jena uses total materialization and in-memory reasoning. Total materialization requires relatively much
more space; therefore, the extension-based inference algorithm outperforms Jena by a considerable margin in time and space per-
formance tests using LUBM and UOBM benchmarks.

Table 23 shows the results of comparison between the extension-based inference algorithm and related approaches. The first
criterion is the type of database schema. SHER, OWLDB, Jena and extension-based inference algorithm use generic RDF stores (G).
In contrast,Minerva and DLDB2 customize the database schema (C) based on inference requirements. The second criterion is sum-
marization. SHER and the extension-based knowledge model differ in the way that they use novel summarization mechanisms on
ontological data. The third criterion is materialization, which is the process of computing all implicit assertions in the KB and is
frequently employed by semantic query and reasoning engines to improve query performance. Minerva, OWLDB, DLDB2 and
Jena apply total materialization (T) on ontological data. On the other side, in partial materialization (P), specific reasoning is
not performed at the materialization time but rather at the query time. SHER and extension-based inference algorithm use partial
materialization. The fourth criterion is the reasoning approach. SHER and DLDB are description logic reasoners (DL). OWLDB, Jena
and the extension-based inference algorithm are rule-based reasoners (RB). Minerva is a hybrid reasoner that combines Descrip-
tion Logic reasoners for the TBox inference with logic rules for the ABox inference. The last criterion concerns where the reasoning
takes place. SHER and Jena are in-memory reasoners (M). Minerva and OWLDB are in-database reasoners (DB). DLBD2 and
extension-based inference algorithm are both in-memory and in-database reasoners.

9. Conclusions and future work

This paper presents a rule-based hybrid reasoning approach for the pD* ontology language. This approach is based on the
extension-based knowledgemodel,whichworks like a summarizationmechanismonontology individuals and provides a foundation
for both backward and forward chaining. The model transformation overhead becomes negligible compared to the decrease in time
and space consumption of forward reasoning. Another effect on forward reasoning process is the decrease in the number of inferred
triples. Besides the ratio of the decrease in the inferred triples is proportional with the size of individual data. The extension-based
knowledge model reduces the complexity (number of constraints) of the queries.

Although the technique shows a significant amount of improvement, there is still room for optimizations, which can be
grouped into two categories. The first group contains optimizations on the database schema. Using a customized database schema
(such as Minerva) would improve the inference, storage and query performances of the database. Another interesting piece of
future work would be to integrate “vertical partitioning” [39] into our approach for improved inference and query performance.
According to this technique, our statements table would be split based on the predicate column. These newly created tables, which
contain two columns (subject, object), would be indexed by their subject and optionally by their objects. We expect this partition-
ing to improve the query performances significantly.

The second group contains the optimizations on query rewriting. The query rewriting algorithm mainly involves collecting
members of extensions. We plan to optimize the query rewriting algorithm by preventing attempts to collect the members of
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empty extensions. Finally, we plan to eliminate node repetition in the query tree through the use of a node sharing approach
(similar to the “node sharing” of the Rete algorithm [30]).

In addition to these optimizations, using a database system (other than Sqlite) that has a built-in query optimizer for
improving query performance further will be an interesting piece of future work.
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Appendix A. OWL constructs

Property characteristics

• TransitiveProperty: if a property P is specified as transitive, then P(x,y) and P(y,z) implies P(x,z).
• SymmetricProperty: if a property P is tagged as symmetric, then P(x,y) implies P(y,x).
• FunctionalProperty: if a property P is tagged as functional, then P(x,y) and P(x,z) implies y=z.
• inverseOf: if a property P1 is tagged as the “owl:inverseOf” P2, then P1(x,y) implies P2(y,x).
• InverseFunctionalProperty: if a property P is tagged as InverseFunctional, then P(y,x) and P(z,x) implies y=z.

Property restrictions

• allValuesFrom, someValuesFrom: the “owl:allValuesFrom” restriction requires that for every instance of the class that has
instances of the specified property, the values of the property are all members of the class indicated by the “owl:allValuesFrom”

clause. For example, the maker of aWinemust be aWinery. The allValuesFrom restriction is applied on the hasMaker property of
thisWine class only. Makers of Cheese are not constrained by this local restriction. The case of “owl:someValuesFrom” is similar.
If we replaced “owl:allValuesFrom” with “owl:someValuesFrom” in the example above, it would mean that at least one of the
hasMaker properties of a Wine must point to an individual that is a Winery.

• Cardinality: the cardinality constraints specify the exact, minimum, or maximum number of elements in a relation.
• hasValue: hasValue allows us to specify classes based on the existence of specific property values. Hence, an individual will be a
member of such a class whenever at least one of its property values is equal to the hasValue resource.

Complex classes

• Set operators
– intersectionOf: the intersection of two classes A and B is the class that contains all elements of A that also belong to B (or

equivalently, all elements of B that also belong to A), but no other elements.
– unionOf: the union of two classes A and B is the class that contains all distinct elements of class A and class B.
– complementOf: the complementOf construct selects all individuals from the domain of discourse that do not belong to a certain class.

• Enumerated Classes: OWL provides the means to specify a class via a direct enumeration of its members. This is done using the
oneOf construct.

• Disjoint Classes: the disjointness of a set of classes can be expressed using the “owl:disjointWith” constructor. This constructor
guarantees that an individual that is a member of one class cannot simultaneously be an instance of a specified other class.

Appendix B. pD* Language

The pD* language weakens the standard iff-semantics of OWL and extends RDFS entailment. The pD* entailment is largely
defined by means of “if conditions”, and extends RDFS with datatypes and a property-related fragment of OWL. The pD* semantics
is intended to represent a reasonable interpretation that is useful for drawing conclusions about instances in the presence of an
ontology and that leads to simple entailment rules and a relatively low computational complexity. Reference [8] shows the
completeness of a set of simple entailment rules for pD* entailment. pD* Entailment is decidable, NP-complete, and in P, if the
target graph has no blank nodes. Just as for RDFS entailment, a partial closure that is sufficient for deciding entailment can be com-
puted in polynomial time.

The expressivity or complexity of pD* is between RDFS and OWL Lite. pD* Extends RDFS in two steps [18]:

• The D* (see Table 24) adds entailment support for literal data-types
• The p (see Table 25) adds rules, which provide partial support for the following OWL primitives: FunctionalProperty, Inverse-
FunctionalProperty, SymmetricProperty, TransitiveProperty, sameAs, inverseOf, equivalentClass, equivalentProperty, onProperty,
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hasValue, someValuesFrom, allValuesFrom, differentFrom and disjointWith. The last two primitives are supported through
inconsistency rules. The OWL entailments related to someValuesFrom and allValuesFrom are supported only in one of the
directions (i.e., there is no full support for the iff-semantics of these OWL primitives).

Appendix C. Test queries
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