A perceptual quality metric for dynamic triangle meshes
Abstract
A measure for assessing the quality of a 3D mesh is necessary in order to determine whether an operation on the mesh, such as watermarking or compression, affects the perceived quality. The studies on this field are limited when compared to the studies for 2D. In this work, we aim a full-reference perceptual quality metric for animated meshes to predict the visibility of local distortions on the mesh surface. The proposed visual quality metric is independent of connectivity and material attributes. Thus, it is not associated to a specific application and can be used for evaluating the effect of an arbitrary mesh processing method. We use a bottom-up approach incorporating both the spatial and temporal sensitivity of the human visual system. In this approach, the mesh sequences go through a pipeline which models the contrast sensitivity and channel decomposition mechanisms of the HVS. As the output of the method, a 3D probability map representing the visibility of distortions is generated. We have validated our method by a formal user experiment and obtained a promising correlation between the user responses and the proposed metric. Finally, we provide a dataset consisting of subjective user evaluation of the quality of public animation datasets.
Collections
- Makale Koleksiyonu [21]