Show simple item record

dc.contributor.authorYildirim, F; Tatar, AC; Eskizeybek, V; Avci, A; Aydin, M
dc.date.accessioned2023-03-02T06:37:53Z
dc.date.available2023-03-02T06:37:53Z
dc.date.issuedDEC
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.12481/14170
dc.description.abstractFiber-reinforced polymer composites serving in harsh conditions must maintain their performance during their entire service. The cryogenic impact is one of the most unpredictable loading types, leading to catastrophic failures of composite structures. This study aims to examine the low-velocity impact (LVI) performance of 3D woven spacer glass-epoxy composite experimentally under cryogenic temperatures. LVI tests were conducted under various temperatures ranging from room temperature (RT) to -196 degrees C. Experimental results reveal that the 3D composites gradually absorbed higher impact energies with decreasing temperature. Besides, the effect of multi-walled carbon nanotube and SiO2 nanofiller reinforcements of the matrix on the impact performance and the damage characteristics were further assessed. Nanofiller modification enhanced the impact resistance up to 30%, especially at RT. However, the nanofiller efficiency declined with decreasing temperature. The apparent damages were visually examined by scanning electron microscopy to address the damage formation. Significant outcomes have been achieved with the nanofiller modification regarding the new usage areas of 3D woven composites.
dc.titleImpact response of nanoparticle reinforced 3D woven spacer/epoxy composites at cryogenic temperatures
dc.title.alternativeJOURNAL OF COMPOSITE MATERIALS
dc.identifier.DOI-ID10.1177/00219983211037052
dc.identifier.volume55
dc.identifier.issue28
dc.identifier.startpage4231
dc.identifier.endpage4244
dc.identifier.issn/e-issn0021-9983
dc.identifier.issn/e-issn1530-793X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record