Basit öğe kaydını göster

dc.contributor.authorMeriç ET
dc.date.accessioned2023-03-02T11:25:19Z
dc.date.available2023-03-02T11:25:19Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.12481/16220
dc.description.abstractQuasi-Frobenius rings are precisely rings over which any right module is a homomorphic image of an injective module. We investigate the structure of rings whose proper cyclic right modules are homomorphic image of injectives. The class of such rings properly contains that of right self-injective rings. We obtain some structure theorems for rings satisfying the said property and apply them to the Artin algebra case: It follows that an Artin algebra with this property is Quasi-Frobenius. © 2020 Taylor & Francis Group, LLC.
dc.titleWhen proper cyclics are homomorphic image of injectives
dc.identifier.DOI-ID10.1080/00927872.2020.1797067
dc.identifier.volume49
dc.identifier.issue1
dc.identifier.startpage151
dc.identifier.endpage161
dc.identifier.issn/e-issn0092-7872


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Scopus [2994]
    Scopus İndeksli Yayınlar Koleksiyonu

Basit öğe kaydını göster