Show simple item record

dc.contributor.authorÖMÜR KIVANÇ KÜRKÇÜ;ERSİN ASLAN;MEHMET SEZER
dc.date.accessioned2020-06-30T10:48:17Z
dc.date.available2020-06-30T10:48:17Z
dc.date.issued2019
dc.identifier.citation0
dc.identifier.urihttps://app.trdizin.gov.tr/publication/paper/detail/TXpNMk5qSTVPUT09
dc.identifier.urihttp://hdl.handle.net/20.500.12481/3536
dc.description.abstractIn this study, we introduce multidelay fractional differential equations with variable coefficients in a unique formula. A novel graph-operational matrix method based on the fractional Caputo, Riemann–Liouville, Caputo–Fabrizio, and Jumarie derivative types is developed to efficiently solve them. We also make use of the collocation points and matrix relations of the matching polynomial of the complete graph in the method. We determine which of the fractional derivative types is more appropriate for the method. The solutions of model problems are improved via a new residual error analysis technique. We design a general computer program module. Thus, we can explicitly monitor the usefulness of the method. All results are scrutinized in tables and figures. Finally, an illustrative algorithm is presented.
dc.language.isoeng
dc.titleA novel graph-operational matrix method for solving multidelay fractional differential equations with variable coefficients and a numerical comparative survey of fractional derivative types
dc.typeRESEARCH
dc.contributor.departmentİZMİR EKONOMİ ÜNİVERSİTESİ;MANİSA CELÂL BAYAR ÜNİVERSİTESİ;MANİSA CELÂL BAYAR ÜNİVERSİTESİ
dc.identifier.nameOfPublishedMaterialTurkish Journal of Mathematics
dc.identifier.DOI-ID10.3906/mat-1806-87
dc.identifier.volume43
dc.identifier.issue1
dc.identifier.startpage373
dc.identifier.endpage392
dc.identifier.issn/e-issn1300-0098;1303-6149


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • TR - Dizin [3877]
    TR - Dizin İndeksli Yayınlar Koleksiyonu

Show simple item record