dc.contributor.author | BUKET ERŞAHİN;ÖZLEM AKTAŞ;DENİZ KILINÇ;Mustafa ERŞAHİN | |
dc.date.accessioned | 2020-06-30T10:49:18Z | |
dc.date.available | 2020-06-30T10:49:18Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | 0 | |
dc.identifier.uri | https://app.trdizin.gov.tr/publication/paper/detail/TXpNMk9EYzFOUT09 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12481/3732 | |
dc.description.abstract | This paper presents a hybrid methodology for Turkish sentiment analysis, which combines the lexicon-based
and machine learning (ML)-based approaches. On the lexicon-based side, we use a sentiment dictionary that is extended
with a synonyms lexicon. Besides this, we tackle the classification problem with three supervised classifiers, naive Bayes,
support vector machines, and J48, on the ML side. Our hybrid methodology combines these two approaches by generating
a new lexicon-based value according to our feature generation algorithm and feeds it as one of the features to machine
learning classifiers. Despite the linguistic challenges caused by the morphological structure of Turkish, the experimental
results show that it improves the accuracy by 7% on average. | |
dc.language.iso | eng | |
dc.title | A hybrid sentiment analysis method for Turkish | |
dc.type | RESEARCH | |
dc.contributor.department | DOKUZ EYLÜL ÜNİVERSİTESİ;DOKUZ EYLÜL ÜNİVERSİTESİ;MANİSA CELÂL BAYAR ÜNİVERSİTESİ;DOKUZ EYLÜL ÜNİVERSİTESİ | |
dc.identifier.nameOfPublishedMaterial | Turkish Journal of Electrical Engineering and Computer Sciences | |
dc.identifier.DOI-ID | 10.3906/elk-1808-189 | |
dc.identifier.volume | 27 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 1780 | |
dc.identifier.endpage | 1783 | |
dc.identifier.issn/e-issn | 1300-0632;1300-0632 | |