Show simple item record

dc.contributor.authorBUKET ERŞAHİN;ÖZLEM AKTAŞ;DENİZ KILINÇ;Mustafa ERŞAHİN
dc.date.accessioned2020-06-30T10:49:18Z
dc.date.available2020-06-30T10:49:18Z
dc.date.issued2019
dc.identifier.citation0
dc.identifier.urihttps://app.trdizin.gov.tr/publication/paper/detail/TXpNMk9EYzFOUT09
dc.identifier.urihttp://hdl.handle.net/20.500.12481/3732
dc.description.abstractThis paper presents a hybrid methodology for Turkish sentiment analysis, which combines the lexicon-based and machine learning (ML)-based approaches. On the lexicon-based side, we use a sentiment dictionary that is extended with a synonyms lexicon. Besides this, we tackle the classification problem with three supervised classifiers, naive Bayes, support vector machines, and J48, on the ML side. Our hybrid methodology combines these two approaches by generating a new lexicon-based value according to our feature generation algorithm and feeds it as one of the features to machine learning classifiers. Despite the linguistic challenges caused by the morphological structure of Turkish, the experimental results show that it improves the accuracy by 7% on average.
dc.language.isoeng
dc.titleA hybrid sentiment analysis method for Turkish
dc.typeRESEARCH
dc.contributor.departmentDOKUZ EYLÜL ÜNİVERSİTESİ;DOKUZ EYLÜL ÜNİVERSİTESİ;MANİSA CELÂL BAYAR ÜNİVERSİTESİ;DOKUZ EYLÜL ÜNİVERSİTESİ
dc.identifier.nameOfPublishedMaterialTurkish Journal of Electrical Engineering and Computer Sciences
dc.identifier.DOI-ID10.3906/elk-1808-189
dc.identifier.volume27
dc.identifier.issue3
dc.identifier.startpage1780
dc.identifier.endpage1783
dc.identifier.issn/e-issn1300-0632;1300-0632


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • TR - Dizin [3877]
    TR - Dizin İndeksli Yayınlar Koleksiyonu

Show simple item record